Hierarchical Tracking by Reinforcement Learning based Searching and Coarse-to-fine Verifying

A class-agnostic tracker typically consists of three key components, i.e., its motion model, its target appearance model, and its updating strategy. However, most recent topperforming trackers mainly focus on constructing complicated appearance models and updating strategies, while using comparative...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2018) vom: 05. Dez.
1. Verfasser: Zhong, Bineng (VerfasserIn)
Weitere Verfasser: Bai, Bing, Li, Jun, Zhang, Yulun, Fu, Yun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM291606245
003 DE-627
005 20250224120848.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2885238  |2 doi 
028 5 2 |a pubmed25n0971.xml 
035 |a (DE-627)NLM291606245 
035 |a (NLM)30530365 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhong, Bineng  |e verfasserin  |4 aut 
245 1 0 |a Hierarchical Tracking by Reinforcement Learning based Searching and Coarse-to-fine Verifying 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a A class-agnostic tracker typically consists of three key components, i.e., its motion model, its target appearance model, and its updating strategy. However, most recent topperforming trackers mainly focus on constructing complicated appearance models and updating strategies, while using comparatively simple and heuristic motion models that may result in an inefficient search and degrade the tracking performance. To address this issue, we propose a hierarchical tracker that learns to move and track based on the combination of data-driven search at the coarse level, and coarse-to-fine verification at the fine level. At the coarse level, a data-driven motion model learned from deep recurrent reinforcement learning provides our tracker with coarse localization of an object. By formulating motion search as an action-decision problem in reinforcement learning, our tracker utilizes a recurrent convolutional neural network based deep Q-network to effectively learn data-driven searching policies. The learned motion model cannot only significantly reduce the search space, but also provide more reliable interested regions for further verifying. At the fine level, a kernelized correlation filter (KCF) based appearance model is adopted to densely yet efficiently verify a local region centered on the predicted location from the motion model. Through using of circulant matrices and fast Fourier transformation, a large number of candidate samples in the local region can be efficiently and effectively evaluated by the KCF based appearance model. Finally, a simple yet robust estimator is designed to analyze possible tracking failure. The experiments on OTB50 and OTB100 illustrate that our tracker achieves better performance than the state-of-the-art trackers 
650 4 |a Journal Article 
700 1 |a Bai, Bing  |e verfasserin  |4 aut 
700 1 |a Li, Jun  |e verfasserin  |4 aut 
700 1 |a Zhang, Yulun  |e verfasserin  |4 aut 
700 1 |a Fu, Yun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2018) vom: 05. Dez.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2018  |g day:05  |g month:12 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2885238  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2018  |b 05  |c 12