Light Field Spatial Super-Resolution Using Deep Efficient Spatial-Angular Separable Convolution

Light field (LF) photography is an emerging paradigm for capturing more immersive representations of the real-world. However, arising from the inherent trade-off between the angular and spatial dimensions, the spatial resolution of LF images captured by commercial micro-lens based LF cameras are sig...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2018) vom: 05. Dez.
1. Verfasser: Yeung, Henry Wing Fung (VerfasserIn)
Weitere Verfasser: Hou, Junhui, Chen, Xiaoming, Chen, Jie, Chen, Zhibo, Chung, Yuk Ying
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM291606237
003 DE-627
005 20240229162051.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2885236  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM291606237 
035 |a (NLM)30530364 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yeung, Henry Wing Fung  |e verfasserin  |4 aut 
245 1 0 |a Light Field Spatial Super-Resolution Using Deep Efficient Spatial-Angular Separable Convolution 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Light field (LF) photography is an emerging paradigm for capturing more immersive representations of the real-world. However, arising from the inherent trade-off between the angular and spatial dimensions, the spatial resolution of LF images captured by commercial micro-lens based LF cameras are significantly constrained. In this paper, we propose effective and efficient end-to-end convolutional neural network models for spatially super-resolving LF images. Specifically, the proposed models have an hourglass shape, which allows feature extraction to be performed at the low resolution level to save both computational and memory costs. To fully make use of the four-dimensional (4-D) structure information of LF data in both spatial and angular domains, we propose to use 4-D convolution to characterize the relationship among pixels. Moreover, as an approximation of 4-D convolution, we also propose to use spatialangular separable (SAS) convolutions for more computationallyand memory-efficient extraction of spatial-angular joint features. Extensive experimental results on 57 test LF images with various challenging natural scenes show significant advantages from the proposed models over state-of-the-art methods. That is, an average PSNR gain of more than 3.0 dB and better visual quality are achieved, and our methods preserve the LF structure of the super-resolved LF images better, which is highly desirable for subsequent applications. In addition, the SAS convolutionbased model can achieve 3× speed up with only negligible reconstruction quality decrease when compared with the 4-D convolution-based one. The source code of our method is online available at https://github.com/spatialsr/DeepLightFieldSSR 
650 4 |a Journal Article 
700 1 |a Hou, Junhui  |e verfasserin  |4 aut 
700 1 |a Chen, Xiaoming  |e verfasserin  |4 aut 
700 1 |a Chen, Jie  |e verfasserin  |4 aut 
700 1 |a Chen, Zhibo  |e verfasserin  |4 aut 
700 1 |a Chung, Yuk Ying  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2018) vom: 05. Dez.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2018  |g day:05  |g month:12 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2885236  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2018  |b 05  |c 12