|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM29156688X |
003 |
DE-627 |
005 |
20231225071142.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1080/09593330.2018.1556741
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0971.xml
|
035 |
|
|
|a (DE-627)NLM29156688X
|
035 |
|
|
|a (NLM)30526405
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Huang, Yiyang
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Degradation kinetics and mechanism of 3-Chlorobenzoic acid in anoxic water environment using graphene/TiO2 as photocatalyst
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 23.06.2020
|
500 |
|
|
|a Date Revised 23.06.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Degradation kinetics and mechanism of 3-Chlorobenzoic acid (3-CBA) in anoxic water environment using graphene/TiO2 (GR/TiO2) as photocatalyst had been investigated. The effects of various parameters such as catalyst dosage, pH, initial concentration, catalyst reuse and dissolved oxygen (DO) on 3-CBA photocatalytic degradation kinetics were studied. The qualitative and quantitative analysis for degradation intermediate products and parent compound were studied by using HPLC, HPLC/MS/MS and IC technologies. The results show that the residual concentration of 3-CBA has a good linear relationship and its correlation coefficient R 2 are all greater than 0.985 by Langmuir-Hinshelwood (L-H) dynamic model under different photocatalytic degradation conditions. Some oxidative degradation products such as 3-chlorophenol, resorcinol, and hydroxyquinol are generated, and some reductive degradation products such as 3-chlorobenzaldehyde, 3-hydroxybenzaldehyde, 3-hydroxybenzyl alcohol, and cyclohexanediol are produced, and part of 3-CBA are mineralized to generate CO2 when DO is in the range of 0.5-1.0 mg/L; When DO is less than 0.28 mg/L, photocatalytic reduction mainly occurs. The results provide a theoretical basis for photocatalytic in situ remediation of pollutants in anoxic water environment
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a GR/TiO2 3-Chlorobenzoic acid
|
650 |
|
4 |
|a anoxic water environment
|
650 |
|
4 |
|a degradation kinetics
|
650 |
|
4 |
|a degradation mechanism
|
650 |
|
7 |
|a Chlorobenzoates
|2 NLM
|
650 |
|
7 |
|a Water Pollutants, Chemical
|2 NLM
|
650 |
|
7 |
|a 3-chlorobenzoic acid
|2 NLM
|
650 |
|
7 |
|a 02UOJ7064K
|2 NLM
|
650 |
|
7 |
|a titanium dioxide
|2 NLM
|
650 |
|
7 |
|a 15FIX9V2JP
|2 NLM
|
650 |
|
7 |
|a Graphite
|2 NLM
|
650 |
|
7 |
|a 7782-42-5
|2 NLM
|
650 |
|
7 |
|a Titanium
|2 NLM
|
650 |
|
7 |
|a D1JT611TNE
|2 NLM
|
700 |
1 |
|
|a Wang, Hui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Huang, Kai
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Huang, Donggen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yin, Shuang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Guo, Qin
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Environmental technology
|d 1993
|g 41(2020), 17 vom: 15. Juli, Seite 2165-2179
|w (DE-627)NLM098202545
|x 1479-487X
|7 nnns
|
773 |
1 |
8 |
|g volume:41
|g year:2020
|g number:17
|g day:15
|g month:07
|g pages:2165-2179
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1080/09593330.2018.1556741
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 41
|j 2020
|e 17
|b 15
|c 07
|h 2165-2179
|