Organohalide Lead Perovskites : More Stable than Glass under Gamma-Ray Radiation
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 31(2019), 4 vom: 30. Jan., Seite e1805547 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2019
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article gamma-ray radiation organohalide perovskites outer space self-healing solar cells stability |
Zusammenfassung: | © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Organohalide metal perovskites have emerged as promising semiconductor materials for use as space solar cells and radiation detectors. However, there is a lack of study of their stability under operational conditions. Here a stability study of perovskite solar cells under gamma-rays and visible light simultaneously is reported. The perovskite active layers are shown to retain 96.8% of their initial power conversion efficiency under continuous irradiation of gamma-rays and light for 1535 h, where gamma-rays have an accumulated dose of 2.3 Mrad. In striking contrast, a glass substrate shows obvious loss of transmittance under the same irradiation conditions. The excellent stability of the perovskite solar cells benefits from the self-healing behavior to recover its efficiency loss from the early degradation induced by gamma-ray irradiation. Defect density characterization reveals that gamma-ray irradiation does not induce electronic trap states. These observations demonstrate the prospects of perovskite materials in applications of radiation detectors and space solar cells |
---|---|
Beschreibung: | Date Completed 30.01.2019 Date Revised 30.09.2020 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.201805547 |