A novel combined model based on echo state network - a case study of PM10 and PM2.5 prediction in China

Particulate Matters such as PM10, PM2.5 may contain heavy metal oxides and harmful substances that threaten human health and environmental quality. In this paper, we propose a new combined neural network algorithm which based on Elman, echo state network (ESN) and cascaded BP neural network (CBP) to...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Environmental technology. - 1993. - 41(2020), 15 vom: 12. Juni, Seite 1937-1949
1. Verfasser: Zhang, Hairui (VerfasserIn)
Weitere Verfasser: Shang, Zhihao, Song, Yanru, He, Zhaoshuang, Li, Lian
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Environmental technology
Schlagworte:Journal Article ESN Elman PM10 and PM2.5 PSO SACBP machine learning neural network model Air Pollutants Metals, Heavy Particulate Matter
LEADER 01000naa a22002652 4500
001 NLM291043100
003 DE-627
005 20231225070032.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1080/09593330.2018.1551941  |2 doi 
028 5 2 |a pubmed24n0970.xml 
035 |a (DE-627)NLM291043100 
035 |a (NLM)30472931 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Hairui  |e verfasserin  |4 aut 
245 1 2 |a A novel combined model based on echo state network - a case study of PM10 and PM2.5 prediction in China 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 22.05.2020 
500 |a Date Revised 22.05.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Particulate Matters such as PM10, PM2.5 may contain heavy metal oxides and harmful substances that threaten human health and environmental quality. In this paper, we propose a new combined neural network algorithm which based on Elman, echo state network (ESN) and cascaded BP neural network (CBP) to predict PM10 and PM2.5. In order to further improve the performance of the prediction result, we use the simulated annealing algorithm (SA) to optimize the parameters in the combination method to form the optimal combination model. And particle swarm optimization (PSO) is used to optimize the parameters in ESN. The chemical species in the atmosphere which include SO2, NO, NO2, O3 and CO in Baiyin, Gansu Province of China are used to test and verify the proposed combined method. The experimental results show that the prediction performance of the combined model presented in this paper is indeed superior to other three neural network models 
650 4 |a Journal Article 
650 4 |a ESN 
650 4 |a Elman 
650 4 |a PM10 and PM2.5 
650 4 |a PSO 
650 4 |a SACBP 
650 4 |a machine learning 
650 4 |a neural network model 
650 7 |a Air Pollutants  |2 NLM 
650 7 |a Metals, Heavy  |2 NLM 
650 7 |a Particulate Matter  |2 NLM 
700 1 |a Shang, Zhihao  |e verfasserin  |4 aut 
700 1 |a Song, Yanru  |e verfasserin  |4 aut 
700 1 |a He, Zhaoshuang  |e verfasserin  |4 aut 
700 1 |a Li, Lian  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Environmental technology  |d 1993  |g 41(2020), 15 vom: 12. Juni, Seite 1937-1949  |w (DE-627)NLM098202545  |x 1479-487X  |7 nnns 
773 1 8 |g volume:41  |g year:2020  |g number:15  |g day:12  |g month:06  |g pages:1937-1949 
856 4 0 |u http://dx.doi.org/10.1080/09593330.2018.1551941  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 41  |j 2020  |e 15  |b 12  |c 06  |h 1937-1949