Lsi1 modulates the antioxidant capacity of rice and protects against ultraviolet-B radiation

Copyright © 2018 Elsevier B.V. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant science : an international journal of experimental plant biology. - 1985. - 278(2019) vom: 06. Jan., Seite 96-106
1. Verfasser: Fang, Changxun (VerfasserIn)
Weitere Verfasser: Li, Lanlan, Zhang, Pengli, Wang, Dahong, Yang, Luke, Reza, Boorboori Mohammad, Lin, Wenxiong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Plant science : an international journal of experimental plant biology
Schlagworte:Journal Article Antioxidants Lsi1 PAL2-2 Rice Silicon UV-B radiation Flavonoids MicroRNAs Phenols Plant Proteins
Beschreibung
Zusammenfassung:Copyright © 2018 Elsevier B.V. All rights reserved.
Silicon (Si) enhances the resistance of rice to biotic and abiotic stress. In rice, the accumulation of Si is controlled by the low silicon rice 1 (Lsi1) gene; overexpression of Lsi1 (Lsi1-OX) increases Si uptake and accumulation, while the reverse is observed in Lsi1-RNA interference (Lsi1-RNAi) transgenic rice. When the two transgenic rice lines and wild-type (WT) rice were exposed to ultraviolet (UV)-B radiation, the Lsi1-OX or Lsi1-RNAi rice showed differential microRNA (miRNA) expression, compared to WT rice. These miRNAs were predicted to target genes involved in light signal transduction and cell detoxification. The greatest capacities of ascorbate peroxidase, superoxide dismutase, peroxidase, and phenylalanine ammonia lyase (PAL) and highest contents of phenolics, flavonoids, and proline were found in Lsi1-OX rice, followed by WT rice and Lsi1-RNAi transgenic rice. A further comparison of the transcript levels of individual PAL genes revealed that the expression of PAL2-2 (Os02g0626400) was positively regulated by Lsi1. Our results demonstrate that Lsi1 overexpression or interference causes changes in both miRNA expression and antioxidant capacity in rice, and therefore modulates rice tolerance to UV-B radiation. Furthermore, we demonstrated that PAL2-2 was positively regulated by Lsi1 during this process
Beschreibung:Date Completed 14.01.2019
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2259
DOI:10.1016/j.plantsci.2018.10.003