RGB-'D' Saliency Detection With Pseudo Depth

Recent studies have shown the effectiveness of using depth information in salient object detection. However, the most commonly seen images so far are still RGB images that do not contain the depth data. Meanwhile, the human brain can extract the geometric model of a scene from an RGB-only image and...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 5 vom: 19. Mai, Seite 2126-2139
1. Verfasser: Xiao, Xiaolin (VerfasserIn)
Weitere Verfasser: Zhou, Yicong, Gong, Yue-Jiao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM290844266
003 DE-627
005 20231225065608.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2882156  |2 doi 
028 5 2 |a pubmed24n0969.xml 
035 |a (DE-627)NLM290844266 
035 |a (NLM)30452371 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xiao, Xiaolin  |e verfasserin  |4 aut 
245 1 0 |a RGB-'D' Saliency Detection With Pseudo Depth 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 24.01.2019 
500 |a Date Revised 24.01.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Recent studies have shown the effectiveness of using depth information in salient object detection. However, the most commonly seen images so far are still RGB images that do not contain the depth data. Meanwhile, the human brain can extract the geometric model of a scene from an RGB-only image and hence provides a 3D perception of the scene. Inspired by this observation, we propose a new concept named RGB-'D' saliency detection, which derives pseudo depth from the RGB images and then performs 3D saliency detection. The pseudo depth can be utilized as image features, prior knowledge, an additional image channel, or independent depth-induced models to boost the performance of traditional RGB saliency models. As an illustration, we develop a new salient object detection algorithm that uses the pseudo depth to derive a depth-driven background prior and a depth contrast feature. Extensive experiments on several standard databases validate the promising performance of the proposed algorithm. In addition, we also adapt two supervised RGB saliency models to our RGB-'D' saliency framework for performance enhancement. The results further demonstrate the generalization ability of the proposed RGB-'D' saliency framework 
650 4 |a Journal Article 
700 1 |a Zhou, Yicong  |e verfasserin  |4 aut 
700 1 |a Gong, Yue-Jiao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 28(2019), 5 vom: 19. Mai, Seite 2126-2139  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:28  |g year:2019  |g number:5  |g day:19  |g month:05  |g pages:2126-2139 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2882156  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2019  |e 5  |b 19  |c 05  |h 2126-2139