Patterning Bubbles by the Stick-Slip Motion of the Advancing Triple Phase Line on Nanostructures

The stick-slip motion of the triple phase contact line (TCL) has wide applications in inkjet printing, surface coatings, functional material assembly, and device fabrication. Here, for the first time, we report that on an alumina substrate with nanostructures, the stick-slip motion of the advancing...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 34(2018), 51 vom: 26. Dez., Seite 15804-15811
1. Verfasser: Zhou, Haihua (VerfasserIn)
Weitere Verfasser: Huang, Zhandong, Cai, Zheren, Zhang, Rui, Wang, Haiyan, Song, Yanlin, Reichmanis, Elsa
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM290843340
003 DE-627
005 20231225065607.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.8b03135  |2 doi 
028 5 2 |a pubmed24n0969.xml 
035 |a (DE-627)NLM290843340 
035 |a (NLM)30452276 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhou, Haihua  |e verfasserin  |4 aut 
245 1 0 |a Patterning Bubbles by the Stick-Slip Motion of the Advancing Triple Phase Line on Nanostructures 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The stick-slip motion of the triple phase contact line (TCL) has wide applications in inkjet printing, surface coatings, functional material assembly, and device fabrication. Here, for the first time, we report that on an alumina substrate with nanostructures, the stick-slip motion of the advancing TCL during spreading of an emulsion droplet can serve as an effective nanopatterning process. Air enclosed in the substrate nanostructures can be exchanged with liquid during the "stick" phase, resulting in the formation of bubbles arranged in a ring pattern. The process takes place in two stages: rings of air form first and then, as the volume of air increases, they separate into air bubbles as a result of the Plateau Rayleigh instability. During the first stage, the rings form due to the stick-slip of the advancing TCL and are ascribed to hydrogen-bonding interactions. Ultimate bubble size is dependent on the substrate pore dimensions. The process was simulated using finite-element analysis to elucidate the mechanism associated with subsequent bubble formation. The simulations corroborate well with the experimental results. This stick-slip motion of the advancing TCL provides new insights into the phenomena associated with droplet spreading and wetting, and the ability to control the formation of patterned bubbles will be promising in applications ranging from microfluidics to printing of functional materials and devices based on bubble templates and applications requiring submerged hydrophobic surface 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Huang, Zhandong  |e verfasserin  |4 aut 
700 1 |a Cai, Zheren  |e verfasserin  |4 aut 
700 1 |a Zhang, Rui  |e verfasserin  |4 aut 
700 1 |a Wang, Haiyan  |e verfasserin  |4 aut 
700 1 |a Song, Yanlin  |e verfasserin  |4 aut 
700 1 |a Reichmanis, Elsa  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 34(2018), 51 vom: 26. Dez., Seite 15804-15811  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:34  |g year:2018  |g number:51  |g day:26  |g month:12  |g pages:15804-15811 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.8b03135  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 34  |j 2018  |e 51  |b 26  |c 12  |h 15804-15811