Design for Highly Piezoelectric and Visible/Near-Infrared Photoresponsive Perovskite Oxides

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 31(2019), 4 vom: 18. Jan., Seite e1805802
1. Verfasser: Xiao, Hongyuan (VerfasserIn)
Weitere Verfasser: Dong, Wen, Guo, Yiping, Wang, Yufeng, Zhong, Haoyin, Li, Qian, Yang, Ming-Min
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article ceramics ferroelectrics perovskite oxides photovoltaics semiconductors
Beschreibung
Zusammenfassung:© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Defect-engineered perovskite oxides that exhibit ferroelectric and photovoltaic properties are promising multifunctional materials. Though introducing gap states by transition metal doping on the perovskite B-site can obtain low bandgap (i.e., 1.1-3.8 eV), the electrically leaky perovskite oxides generally lose piezoelectricity mainly due to oxygen vacancies. Therefore, the development of highly piezoelectric ferroelectric semiconductor remains challenging. Here, inspired by point-defect-mediated large piezoelectricity in ferroelectrics especially at the morphotropic phase boundary (MPB) region, an efficient strategy is proposed by judiciously introducing the gap states at the MPB where defect-induced local polar heterogeneities are thermodynamically coupled with the host polarization to simultaneously achieve high piezoelectricity and low bandgap. A concrete example, Ni2+ -mediated (1-x)Na0.5 Bi0.5 TiO3 -xBa(Ti0.5 Ni0.5 )O3-δ (x = 0.02-0.08) composition is presented, which can show excellent piezoelectricity and unprecedented visible/near-infrared light absorption with a lowest ever bandgap ≈0.9 eV at room temperature. In particular, the MPB composition x = 0.05 shows the best ferroelectricity/piezoelectricity (d33 = 151 pC N-1 , Pr = 31.2 μC cm-2 ) and a largely enhanced photocurrent density approximately two orders of magnitude higher compared with classic ferroelectric (Pb,La)(Zr,Ti)O3 . This research provides a new paradigm for designing highly piezoelectric and visible/near-infrared photoresponsive perovskite oxides for solar energy conversion, near-infrared detection, and other multifunctional applications
Beschreibung:Date Completed 30.01.2019
Date Revised 01.10.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201805802