|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM290747694 |
003 |
DE-627 |
005 |
20231225065403.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2019 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TUFFC.2018.2881409
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0969.xml
|
035 |
|
|
|a (DE-627)NLM290747694
|
035 |
|
|
|a (NLM)30442605
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wu, Xun
|e verfasserin
|4 aut
|
245 |
1 |
3 |
|a An FPGA-Based Backend System for Intravascular Photoacoustic and Ultrasound Imaging
|
264 |
|
1 |
|c 2019
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 01.01.2020
|
500 |
|
|
|a Date Revised 06.10.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a The integration of intravascular ultrasound (IVUS) and intravascular photoacoustic (IVPA) imaging produces an imaging modality with high sensitivity and specificity which is particularly needed in interventional cardiology. Conventional side-looking IVUS imaging with a single-element ultrasound (US) transducer lacks forward-viewing capability, which limits the application of this imaging mode in intravascular intervention guidance, Doppler-based flow measurement, and visualization of nearly, or totally blocked arteries. For both side-looking and forward-looking imaging, the necessity to mechanically scan the US transducer limits the imaging frame rate, and therefore, array-based solutions are desired. In this paper, we present a low-cost, compact, high-speed, and programmable imaging system based on a field-programmable gate array suitable for dual-mode forward-looking IVUS/IVPA imaging. The system has 16 US transmit and receive channels and functions in multiple modes including interleaved photoacoustic (PA) and US imaging, hardware-based high-frame-rate US imaging, software-driven US imaging, and velocity measurement. The system is implemented in the register-transfer level, and the central system controller is implemented as a finite-state machine. The system was tested with a capacitive micromachined ultrasonic transducer array. A 170-frames-per-second (FPS) US imaging frame rate is achieved in the hardware-based high-frame-rate US imaging mode while the interleaved PA and US imaging mode operates at a 60-FPS US and a laser-limited 20-FPS PA imaging frame rate. The performance of the system benefits from the flexibility and efficiency provided by the low-level implementation. The resulting system provides a convenient backend platform for research and clinical IVPA and IVUS imaging
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, N.I.H., Extramural
|
700 |
1 |
|
|a Sanders, Jean L
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Xiao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yamaner, Feysel Yalcin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Oralkan, Omer
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on ultrasonics, ferroelectrics, and frequency control
|d 1986
|g 66(2019), 1 vom: 14. Jan., Seite 45-56
|w (DE-627)NLM098181017
|x 1525-8955
|7 nnns
|
773 |
1 |
8 |
|g volume:66
|g year:2019
|g number:1
|g day:14
|g month:01
|g pages:45-56
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TUFFC.2018.2881409
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_24
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 66
|j 2019
|e 1
|b 14
|c 01
|h 45-56
|