SPFTN : A Joint Learning Framework for Localizing and Segmenting Objects in Weakly Labeled Videos

Object localization and segmentation in weakly labeled videos are two interesting yet challenging tasks. Models built for simultaneous object localization and segmentation have been explored in the conventional fully supervised learning scenario to boost the performance of each task. However, none o...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 42(2020), 2 vom: 14. Feb., Seite 475-489
1. Verfasser: Zhang, Dingwen (VerfasserIn)
Weitere Verfasser: Han, Junwei, Yang, Le, Xu, Dong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM290747686
003 DE-627
005 20231225065403.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2018.2881114  |2 doi 
028 5 2 |a pubmed24n0969.xml 
035 |a (DE-627)NLM290747686 
035 |a (NLM)30442600 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Dingwen  |e verfasserin  |4 aut 
245 1 0 |a SPFTN  |b A Joint Learning Framework for Localizing and Segmenting Objects in Weakly Labeled Videos 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.03.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Object localization and segmentation in weakly labeled videos are two interesting yet challenging tasks. Models built for simultaneous object localization and segmentation have been explored in the conventional fully supervised learning scenario to boost the performance of each task. However, none of the existing works has attempted to jointly learn object localization and segmentation models under weak supervision. To this end, we propose a joint learning framework called Self-Paced Fine-Tuning Network (SPFTN) for localizing and segmenting objects in weakly labelled videos. Learning the deep model jointly for object localization and segmentation under weak supervision is very challenging as the learning process of each single task would face serious ambiguity issue due to the lack of bounding-box or pixel-level supervision. To address this problem, our proposed deep SPFTN model is carefully designed with a novel multi-task self-paced learning objective, which leverages the task-specific prior knowledge and the knowledge that has been already captured to infer the confident training samples for each task. By aggregating the confident knowledge from each single task to mine reliable patterns and learning deep feature representation for both tasks, the proposed learning framework can address the ambiguity issue under weak supervision with simple optimization. Comprehensive experiments on the large-scale YouTube-Objects and DAVIS datasets demonstrate that the proposed approach achieves superior performance when compared with other state-of-the-art methods and the baseline networks/models 
650 4 |a Journal Article 
700 1 |a Han, Junwei  |e verfasserin  |4 aut 
700 1 |a Yang, Le  |e verfasserin  |4 aut 
700 1 |a Xu, Dong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 42(2020), 2 vom: 14. Feb., Seite 475-489  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:42  |g year:2020  |g number:2  |g day:14  |g month:02  |g pages:475-489 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2018.2881114  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 42  |j 2020  |e 2  |b 14  |c 02  |h 475-489