Hollow-Structured Metal Oxides as Oxygen-Related Catalysts
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 31(2019), 38 vom: 15. Sept., Seite e1801430 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2019
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article Review hollow structures metal-air batteries oxygen evolution reaction oxygen reduction reaction transition metal oxides |
Zusammenfassung: | © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Metal oxide hollow structures with large surface area, low density, and high loading capacity have received great attention for energy-related applications. Acting as oxygen-related catalysts, hollow-structured transition metal oxides offer low overpotential, fast reaction rate, and excellent stability. Herein, recent progress in the oxygen-related catalysis (e.g., oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and metal-air batteries) of hollow-structured transition metal oxides is discussed. Through a comprehensive outline of hollow-structured spinels, perovskites, rutiles, etc., a rational design strategy is provided for an enhanced oxygen-related catalysis performance from the viewpoint of crystal structures. Urgent challenges and further research directions are presented for hollow-structured transition metal oxides toward excellent oxygen-related catalysis |
---|---|
Beschreibung: | Date Completed 27.09.2019 Date Revised 01.10.2020 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.201801430 |