Influence Function and Robust Variant of Kernel Canonical Correlation Analysis
Many unsupervised kernel methods rely on the estimation of kernel covariance operator (kernel CO) or kernel cross-covariance operator (kernel CCO). Both are sensitive to contaminated data, even when bounded positive definite kernels are used. To the best of our knowledge, there are few well-founded...
Veröffentlicht in: | Neurocomputing. - 1998. - 304(2018) vom: 23. Aug., Seite 12-29 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2018
|
Zugriff auf das übergeordnete Werk: | Neurocomputing |
Schlagworte: | Journal Article Influence function Kernel (coss-) covariance operator Kernel methods Robustness and Imaging genetics analysis |
Online verfügbar |
Volltext |