Influence Function and Robust Variant of Kernel Canonical Correlation Analysis

Many unsupervised kernel methods rely on the estimation of kernel covariance operator (kernel CO) or kernel cross-covariance operator (kernel CCO). Both are sensitive to contaminated data, even when bounded positive definite kernels are used. To the best of our knowledge, there are few well-founded...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Neurocomputing. - 1998. - 304(2018) vom: 23. Aug., Seite 12-29
1. Verfasser: Alam, Md Ashad (VerfasserIn)
Weitere Verfasser: Fukumizu, Kenji, Wang, Yu-Ping
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Neurocomputing
Schlagworte:Journal Article Influence function Kernel (coss-) covariance operator Kernel methods Robustness and Imaging genetics analysis