A novel imputation methodology for time series based on pattern sequence forecasting

The Pattern Sequence Forecasting (PSF) algorithm is a previously described algorithm that identifies patterns in time series data and forecasts values using periodic characteristics of the observations. A new method for univariate time series is introduced that modifies the PSF algorithm to simultan...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition letters. - 1998. - 116(2018) vom: 01. Dez., Seite 88-96
1. Verfasser: Bokde, Neeraj (VerfasserIn)
Weitere Verfasser: Martínez Álvarez, Francisco, Beck, Marcus W, Kulat, Kishore
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Pattern recognition letters
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM290488877
003 DE-627
005 20250224085139.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.patrec.2018.09.020  |2 doi 
028 5 2 |a pubmed25n0968.xml 
035 |a (DE-627)NLM290488877 
035 |a (NLM)30416234 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bokde, Neeraj  |e verfasserin  |4 aut 
245 1 2 |a A novel imputation methodology for time series based on pattern sequence forecasting 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 30.09.2020 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The Pattern Sequence Forecasting (PSF) algorithm is a previously described algorithm that identifies patterns in time series data and forecasts values using periodic characteristics of the observations. A new method for univariate time series is introduced that modifies the PSF algorithm to simultaneously forecast and backcast missing values for imputation. The imputePSF method extends PSF by characterizing repeating patterns of existing observations to provide a more precise estimate of missing values compared to more conventional methods, such as replacement with means or last observation carried forward. The imputation accuracy of imputePSF was evaluated by simulating varying amounts of missing observations with three univariate datasets. Comparisons of imputePSF with well-established methods using the same simulations demonstrated an overall reduction in error estimates. The imputePSF algorithm can produce more precise imputations on appropriate datasets, particularly those with periodic and repeating patterns 
650 4 |a Journal Article 
700 1 |a Martínez Álvarez, Francisco  |e verfasserin  |4 aut 
700 1 |a Beck, Marcus W  |e verfasserin  |4 aut 
700 1 |a Kulat, Kishore  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Pattern recognition letters  |d 1998  |g 116(2018) vom: 01. Dez., Seite 88-96  |w (DE-627)NLM098154265  |x 0167-8655  |7 nnns 
773 1 8 |g volume:116  |g year:2018  |g day:01  |g month:12  |g pages:88-96 
856 4 0 |u http://dx.doi.org/10.1016/j.patrec.2018.09.020  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 116  |j 2018  |b 01  |c 12  |h 88-96