Enhanced sampling method in molecular simulations using genetic algorithm for biomolecular systems

© 2018 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 40(2019), 2 vom: 15. Jan., Seite 475-481
1. Verfasser: Sakae, Yoshitake (VerfasserIn)
Weitere Verfasser: Straub, John E, Okamoto, Yuko
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't genetic algorithm molecular simulation parallel computing protein folding sampling method Peptides
LEADER 01000caa a22002652c 4500
001 NLM290468612
003 DE-627
005 20250224084728.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.25735  |2 doi 
028 5 2 |a pubmed25n0968.xml 
035 |a (DE-627)NLM290468612 
035 |a (NLM)30414195 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sakae, Yoshitake  |e verfasserin  |4 aut 
245 1 0 |a Enhanced sampling method in molecular simulations using genetic algorithm for biomolecular systems 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 01.06.2020 
500 |a Date Revised 01.06.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2018 Wiley Periodicals, Inc. 
520 |a We propose a molecular simulation method using genetic algorithm (GA) for biomolecular systems to obtain ensemble averages efficiently. In this method, we incorporate the genetic crossover, which is one of the operations of GA, to any simulation method such as conventional molecular dynamics (MD), Monte Carlo, and other simulation methods. The genetic crossover proposes candidate conformations by exchanging parts of conformations of a target molecule between a pair of conformations during the simulation. If the candidate conformations are accepted, the simulation resumes from the accepted ones. While conventional simulations are based on local update of conformations, the genetic crossover introduces global update of conformations. As an example of the present approach, we incorporated genetic crossover to MD simulations. We tested the validity of the method by calculating ensemble averages and the sampling efficiency by using two kinds of peptides, ALA3 and (AAQAA)3 . The results show that for ALA3 system, the distribution probabilities of backbone dihedral angles are in good agreement with those of the conventional MD and replica-exchange MD simulations. In the case of (AAQAA)3 system, our method showed lower structural correlation of α-helix structures than the other two methods and more flexibility in the backbone ψ angles than the conventional MD simulation. These results suggest that our method gives more efficient conformational sampling than conventional simulation methods based on local update of conformations. © 2018 Wiley Periodicals, Inc 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a genetic algorithm 
650 4 |a molecular simulation 
650 4 |a parallel computing 
650 4 |a protein folding 
650 4 |a sampling method 
650 7 |a Peptides  |2 NLM 
700 1 |a Straub, John E  |e verfasserin  |4 aut 
700 1 |a Okamoto, Yuko  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 40(2019), 2 vom: 15. Jan., Seite 475-481  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnas 
773 1 8 |g volume:40  |g year:2019  |g number:2  |g day:15  |g month:01  |g pages:475-481 
856 4 0 |u http://dx.doi.org/10.1002/jcc.25735  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 40  |j 2019  |e 2  |b 15  |c 01  |h 475-481