Autonomous Ultrafast Self-Healing Hydrogels by pH-Responsive Functional Nanofiber Gelators as Cell Matrices
© 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 31(2019), 2 vom: 01. Jan., Seite e1805044 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2019
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article cell cultivation depsi peptide hydrogels peptide nanofibers thixotropy |
Zusammenfassung: | © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. The synthesis of hybrid hydrogels by pH-controlled structural transition with exceptional rheological properties as cellular matrix is reported. "Depsi" peptide sequences are grafted onto a polypeptide backbone that undergo a pH-induced intramolecular O-N-acyl migration at physiological conditions affording peptide nanofibers (PNFs) as supramolecular gelators. The polypeptide-PNF hydrogels are mechanically remarkably robust. They reveal exciting thixotropic behavior with immediate in situ recovery after exposure to various high strains over long periods and self-repair of defects by instantaneous reassembly. High cytocompatibility, convenient functionalization by coassembly, and controlled enzymatic degradation but stability in 2D and 3D cell culture as demonstrated by the encapsulation of primary human umbilical vein endothelial cells and neuronal cells open many attractive opportunities for 3D tissue engineering and other biomedical applications |
---|---|
Beschreibung: | Date Completed 11.01.2019 Date Revised 30.09.2020 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.201805044 |