Late Fusion Incomplete Multi-View Clustering

Incomplete multi-view clustering optimally integrates a group of pre-specified incomplete views to improve clustering performance. Among various excellent solutions, multiple kernel $k$k-means with incomplete kernels forms a benchmark, which redefines the incomplete multi-view clustering as a joint...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 41(2019), 10 vom: 01. Okt., Seite 2410-2423
1. Verfasser: Liu, Xinwang (VerfasserIn)
Weitere Verfasser: Zhu, Xinzhong, Li, Miaomiao, Wang, Lei, Tang, Chang, Yin, Jianping, Shen, Dinggang, Wang, Huaimin, Gao, Wen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM290210909
003 DE-627
005 20231225064233.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2018.2879108  |2 doi 
028 5 2 |a pubmed24n0967.xml 
035 |a (DE-627)NLM290210909 
035 |a (NLM)30387725 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Xinwang  |e verfasserin  |4 aut 
245 1 0 |a Late Fusion Incomplete Multi-View Clustering 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 25.02.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Incomplete multi-view clustering optimally integrates a group of pre-specified incomplete views to improve clustering performance. Among various excellent solutions, multiple kernel $k$k-means with incomplete kernels forms a benchmark, which redefines the incomplete multi-view clustering as a joint optimization problem where the imputation and clustering are alternatively performed until convergence. However, the comparatively intensive computational and storage complexities preclude it from practical applications. To address these issues, we propose Late Fusion Incomplete Multi-view Clustering (LF-IMVC) which effectively and efficiently integrates the incomplete clustering matrices generated by incomplete views. Specifically, our algorithm jointly learns a consensus clustering matrix, imputes each incomplete base matrix, and optimizes the corresponding permutation matrices. We develop a three-step iterative algorithm to solve the resultant optimization problem with linear computational complexity and theoretically prove its convergence. Further, we conduct comprehensive experiments to study the proposed LF-IMVC in terms of clustering accuracy, running time, advantages of late fusion multi-view clustering, evolution of the learned consensus clustering matrix, parameter sensitivity and convergence. As indicated, our algorithm significantly and consistently outperforms some state-of-the-art algorithms with much less running time and memory 
650 4 |a Journal Article 
700 1 |a Zhu, Xinzhong  |e verfasserin  |4 aut 
700 1 |a Li, Miaomiao  |e verfasserin  |4 aut 
700 1 |a Wang, Lei  |e verfasserin  |4 aut 
700 1 |a Tang, Chang  |e verfasserin  |4 aut 
700 1 |a Yin, Jianping  |e verfasserin  |4 aut 
700 1 |a Shen, Dinggang  |e verfasserin  |4 aut 
700 1 |a Wang, Huaimin  |e verfasserin  |4 aut 
700 1 |a Gao, Wen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 41(2019), 10 vom: 01. Okt., Seite 2410-2423  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:41  |g year:2019  |g number:10  |g day:01  |g month:10  |g pages:2410-2423 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2018.2879108  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 41  |j 2019  |e 10  |b 01  |c 10  |h 2410-2423