A Blind Stereoscopic Image Quality Evaluator with Segmented Stacked Autoencoders Considering The Whole Visual Perception Route

Most of the current blind stereoscopic image quality assessment (SIQA) algorithms cannot show reliable accuracy. One reason is that they do not have the deep architectures and the other reason is that they are designed on the relatively weak biological basis, compared with findings on human visual s...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2018) vom: 26. Okt.
1. Verfasser: Yang, Jiachen (VerfasserIn)
Weitere Verfasser: Sim, Kyohoon, Gao, Xinbo, Lu, Wen, Meng, Qinggang, Li, Baihua
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM290053420
003 DE-627
005 20240229162018.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2878283  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM290053420 
035 |a (NLM)30371364 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Jiachen  |e verfasserin  |4 aut 
245 1 2 |a A Blind Stereoscopic Image Quality Evaluator with Segmented Stacked Autoencoders Considering The Whole Visual Perception Route 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Most of the current blind stereoscopic image quality assessment (SIQA) algorithms cannot show reliable accuracy. One reason is that they do not have the deep architectures and the other reason is that they are designed on the relatively weak biological basis, compared with findings on human visual system (HVS). In this paper, we propose a Deep Edge and COlor Signal INtegrity Evaluator (DECOSINE) based on the whole visual perception route from eyes to the frontal lobe, and especially focus on edge and color signal processing in retinal ganglion cells (RGC) and lateral geniculate nucleus (LGN). Furthermore, to model the complex and deep structure of the visual cortex, Segmented Stacked Auto-encoder (S-SAE) is used, which has not utilized for SIQA before. The utilization of the S-SAE complements weakness of deep learning-based SIQA metrics that require a very long training time. Experiments are conducted on popular SIQA databases, and the superiority of DECOSINE in terms of prediction accuracy and monotonicity is proved. The experimental results show that our model about the whole visual perception route and utilization of S-SAE are effective for SIQA 
650 4 |a Journal Article 
700 1 |a Sim, Kyohoon  |e verfasserin  |4 aut 
700 1 |a Gao, Xinbo  |e verfasserin  |4 aut 
700 1 |a Lu, Wen  |e verfasserin  |4 aut 
700 1 |a Meng, Qinggang  |e verfasserin  |4 aut 
700 1 |a Li, Baihua  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2018) vom: 26. Okt.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2018  |g day:26  |g month:10 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2878283  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2018  |b 26  |c 10