Discrete-Continuous Transformation Matching for Dense Semantic Correspondence

Techniques for dense semantic correspondence have provided limited ability to deal with the geometric variations that commonly exist between semantically similar images. While variations due to scale and rotation have been examined, there is a lack of practical solutions for more complex deformation...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 42(2020), 1 vom: 29. Jan., Seite 59-73
1. Verfasser: Kim, Seungryong (VerfasserIn)
Weitere Verfasser: Min, Dongbo, Lin, Stephen, Sohn, Kwanghoon
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM290053358
003 DE-627
005 20250224073227.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2018.2878240  |2 doi 
028 5 2 |a pubmed25n0966.xml 
035 |a (DE-627)NLM290053358 
035 |a (NLM)30371354 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kim, Seungryong  |e verfasserin  |4 aut 
245 1 0 |a Discrete-Continuous Transformation Matching for Dense Semantic Correspondence 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.03.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Techniques for dense semantic correspondence have provided limited ability to deal with the geometric variations that commonly exist between semantically similar images. While variations due to scale and rotation have been examined, there is a lack of practical solutions for more complex deformations such as affine transformations because of the tremendous size of the associated solution space. To address this problem, we present a discrete-continuous transformation matching (DCTM) framework where dense affine transformation fields are inferred through a discrete label optimization in which the labels are iteratively updated via continuous regularization. In this way, our approach draws solutions from the continuous space of affine transformations in a manner that can be computed efficiently through constant-time edge-aware filtering and a proposed affine-varying CNN-based descriptor. Furthermore, leveraging correspondence consistency and confidence-guided filtering in each iteration facilitates the convergence of our method. Experimental results show that this model outperforms the state-of-the-art methods for dense semantic correspondence on various benchmarks and applications 
650 4 |a Journal Article 
700 1 |a Min, Dongbo  |e verfasserin  |4 aut 
700 1 |a Lin, Stephen  |e verfasserin  |4 aut 
700 1 |a Sohn, Kwanghoon  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 42(2020), 1 vom: 29. Jan., Seite 59-73  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:42  |g year:2020  |g number:1  |g day:29  |g month:01  |g pages:59-73 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2018.2878240  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 42  |j 2020  |e 1  |b 29  |c 01  |h 59-73