Freestanding 3D Mesostructures, Functional Devices, and Shape-Programmable Systems Based on Mechanically Induced Assembly with Shape Memory Polymers

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 31(2019), 2 vom: 15. Jan., Seite e1805615
1. Verfasser: Wang, Xueju (VerfasserIn)
Weitere Verfasser: Guo, Xiaogang, Ye, Jilong, Zheng, Ning, Kohli, Punit, Choi, Dongwhi, Zhang, Yi, Xie, Zhaoqian, Zhang, Qihui, Luan, Haiwen, Nan, Kewang, Kim, Bong Hoon, Xu, Yameng, Shan, Xiwei, Bai, Wubin, Sun, Rujie, Wang, Zizheng, Jang, Hokyung, Zhang, Fan, Ma, Yinji, Xu, Zheng, Feng, Xue, Xie, Tao, Huang, Yonggang, Zhang, Yihui, Rogers, John A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article 3D microstructures 3D printing 4D printing guided assembly shape memory polymers
LEADER 01000naa a22002652 4500
001 NLM290045851
003 DE-627
005 20231225063858.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201805615  |2 doi 
028 5 2 |a pubmed24n0966.xml 
035 |a (DE-627)NLM290045851 
035 |a (NLM)30370605 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Xueju  |e verfasserin  |4 aut 
245 1 0 |a Freestanding 3D Mesostructures, Functional Devices, and Shape-Programmable Systems Based on Mechanically Induced Assembly with Shape Memory Polymers 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.01.2019 
500 |a Date Revised 01.10.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a Capabilities for controlled formation of sophisticated 3D micro/nanostructures in advanced materials have foundational implications across a broad range of fields. Recently developed methods use stress release in prestrained elastomeric substrates as a driving force for assembling 3D structures and functional microdevices from 2D precursors. A limitation of this approach is that releasing these structures from their substrate returns them to their original 2D layouts due to the elastic recovery of the constituent materials. Here, a concept in which shape memory polymers serve as a means to achieve freestanding 3D architectures from the same basic approach is introduced, with demonstrated ability to realize lateral dimensions, characteristic feature sizes, and thicknesses as small as ≈500, 10, and 5 µm simultaneously, and the potential to scale to much larger or smaller dimensions. Wireless electronic devices illustrate the capacity to integrate other materials and functional components into these 3D frameworks. Quantitative mechanics modeling and experimental measurements illustrate not only shape fixation but also capabilities that allow for structure recovery and shape programmability, as a form of 4D structural control. These ideas provide opportunities in fields ranging from micro-electromechanical systems and microrobotics, to smart intravascular stents, tissue scaffolds, and many others 
650 4 |a Journal Article 
650 4 |a 3D microstructures 
650 4 |a 3D printing 
650 4 |a 4D printing 
650 4 |a guided assembly 
650 4 |a shape memory polymers 
700 1 |a Guo, Xiaogang  |e verfasserin  |4 aut 
700 1 |a Ye, Jilong  |e verfasserin  |4 aut 
700 1 |a Zheng, Ning  |e verfasserin  |4 aut 
700 1 |a Kohli, Punit  |e verfasserin  |4 aut 
700 1 |a Choi, Dongwhi  |e verfasserin  |4 aut 
700 1 |a Zhang, Yi  |e verfasserin  |4 aut 
700 1 |a Xie, Zhaoqian  |e verfasserin  |4 aut 
700 1 |a Zhang, Qihui  |e verfasserin  |4 aut 
700 1 |a Luan, Haiwen  |e verfasserin  |4 aut 
700 1 |a Nan, Kewang  |e verfasserin  |4 aut 
700 1 |a Kim, Bong Hoon  |e verfasserin  |4 aut 
700 1 |a Xu, Yameng  |e verfasserin  |4 aut 
700 1 |a Shan, Xiwei  |e verfasserin  |4 aut 
700 1 |a Bai, Wubin  |e verfasserin  |4 aut 
700 1 |a Sun, Rujie  |e verfasserin  |4 aut 
700 1 |a Wang, Zizheng  |e verfasserin  |4 aut 
700 1 |a Jang, Hokyung  |e verfasserin  |4 aut 
700 1 |a Zhang, Fan  |e verfasserin  |4 aut 
700 1 |a Ma, Yinji  |e verfasserin  |4 aut 
700 1 |a Xu, Zheng  |e verfasserin  |4 aut 
700 1 |a Feng, Xue  |e verfasserin  |4 aut 
700 1 |a Xie, Tao  |e verfasserin  |4 aut 
700 1 |a Huang, Yonggang  |e verfasserin  |4 aut 
700 1 |a Zhang, Yihui  |e verfasserin  |4 aut 
700 1 |a Rogers, John A  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 31(2019), 2 vom: 15. Jan., Seite e1805615  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:31  |g year:2019  |g number:2  |g day:15  |g month:01  |g pages:e1805615 
856 4 0 |u http://dx.doi.org/10.1002/adma.201805615  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2019  |e 2  |b 15  |c 01  |h e1805615