|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM290029163 |
003 |
DE-627 |
005 |
20250224072826.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2018 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201803355
|2 doi
|
028 |
5 |
2 |
|a pubmed25n0966.xml
|
035 |
|
|
|a (DE-627)NLM290029163
|
035 |
|
|
|a (NLM)30368926
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Sanborn, Jeremy R
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Carbon Nanotube Porins in Amphiphilic Block Copolymers as Fully Synthetic Mimics of Biological Membranes
|
264 |
|
1 |
|c 2018
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 25.03.2019
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a Biological membranes provide a fascinating example of a separation system that is multifunctional, tunable, precise, and efficient. Biomimetic membranes, which mimic the architecture of cellular membranes, have the potential to deliver significant improvements in specificity and permeability. Here, a fully synthetic biomimetic membrane is reported that incorporates ultra-efficient 1.5 nm diameter carbon nanotube porin (CNTPs) channels in a block-copolymer matrix. It is demonstrated that CNTPs maintain high proton and water permeability in these membranes. CNTPs can also mimic the behavior of biological gap junctions by forming bridges between vesicular compartments that allow transport of small molecules
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a artificial membranes
|
650 |
|
4 |
|a carbon nanotube porins
|
650 |
|
4 |
|a carbon nanotubes
|
650 |
|
4 |
|a fast transport
|
650 |
|
4 |
|a polymersomes
|
650 |
|
7 |
|a Membranes, Artificial
|2 NLM
|
650 |
|
7 |
|a Nanotubes, Carbon
|2 NLM
|
650 |
|
7 |
|a Polymers
|2 NLM
|
650 |
|
7 |
|a Porins
|2 NLM
|
700 |
1 |
|
|a Chen, Xi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yao, Yun-Chiao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hammons, Joshua A
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tunuguntla, Ramya H
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Yuliang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Newcomb, Christina C
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Soltis, Jennifer A
|e verfasserin
|4 aut
|
700 |
1 |
|
|a De Yoreo, James J
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Van Buuren, Anthony
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Parikh, Atul N
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Noy, Aleksandr
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 30(2018), 51 vom: 30. Dez., Seite e1803355
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:30
|g year:2018
|g number:51
|g day:30
|g month:12
|g pages:e1803355
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201803355
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 30
|j 2018
|e 51
|b 30
|c 12
|h e1803355
|