A computational foray into the mechanism and catalysis of the adduct formation reaction of guanine with crotonaldehyde

© 2018 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 40(2019), 4 vom: 05. Feb., Seite 630-637
1. Verfasser: Kroeger, Asja A (VerfasserIn)
Weitere Verfasser: Karton, Amir
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't DNA damage Michael addition water catalysis Aldehydes DNA Adducts Guanine 5Z93L87A1R 2-butenal 9G72074TUW
LEADER 01000naa a22002652 4500
001 NLM290028329
003 DE-627
005 20231225063835.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.25595  |2 doi 
028 5 2 |a pubmed24n0966.xml 
035 |a (DE-627)NLM290028329 
035 |a (NLM)30368841 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kroeger, Asja A  |e verfasserin  |4 aut 
245 1 2 |a A computational foray into the mechanism and catalysis of the adduct formation reaction of guanine with crotonaldehyde 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 26.05.2020 
500 |a Date Revised 26.05.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2018 Wiley Periodicals, Inc. 
520 |a Crotonaldehyde, a common environmental pollutant and product of endogenous lipid peroxidation, reacts with guanine to form DNA adducts with pronounced genotoxicity and mutagenicity. Here, we explore the molecular mechanism of this adduct formation using double-hybrid density functional theory methods. The reaction can be envisaged to occur in a two-step fashion via an aza-Michael addition leading to an intermediate ring-open adduct followed by a cyclization reaction giving the mutagenic ring-closed adduct. We find that (i) a 1,2-type addition is favored over a 1,4-type addition for the aza-Michael addition, and (ii) an initial tautomerization of the guanine moiety in the resulting ring-open adduct significantly reduces the barrier toward cyclization compared to the direct cyclization of the ring-open adduct in its keto-form. Overall, the aza-Michael addition is found to be rate-determining. We further find that participation of a catalytic water molecule significantly reduces the energy barriers of both the addition and cyclization reaction. © 2018 Wiley Periodicals, Inc 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a DNA damage 
650 4 |a Michael addition 
650 4 |a water catalysis 
650 7 |a Aldehydes  |2 NLM 
650 7 |a DNA Adducts  |2 NLM 
650 7 |a Guanine  |2 NLM 
650 7 |a 5Z93L87A1R  |2 NLM 
650 7 |a 2-butenal  |2 NLM 
650 7 |a 9G72074TUW  |2 NLM 
700 1 |a Karton, Amir  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 40(2019), 4 vom: 05. Feb., Seite 630-637  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:40  |g year:2019  |g number:4  |g day:05  |g month:02  |g pages:630-637 
856 4 0 |u http://dx.doi.org/10.1002/jcc.25595  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 40  |j 2019  |e 4  |b 05  |c 02  |h 630-637