|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM290028299 |
003 |
DE-627 |
005 |
20250224072817.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2019 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/jcc.25576
|2 doi
|
028 |
5 |
2 |
|a pubmed25n0966.xml
|
035 |
|
|
|a (DE-627)NLM290028299
|
035 |
|
|
|a (NLM)30368837
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Shi, Xuetao
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Controlling the strong field fragmentation of ClCHO+ using two laser pulses -an ab initio molecular dynamics simulation
|
264 |
|
1 |
|c 2019
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 20.11.2019
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2018 Wiley Periodicals, Inc.
|
520 |
|
|
|a For a single, intense 7 μm linearly polarized laser pulse, we found that the branching ratio for the fragmentation of ClCHO+ → Cl + HCO+ , H + ClCO+ , HCl+ +CO depended strongly on the orientation of the molecule (J. Phys. Chem. Lett. 2012, 3 2541). The present study explores the possibility of controlling the branching ratio for fragmentation by using two independent pulses with different frequencies, alignment and delay. Born-Oppenheimer molecular dynamics simulations in the laser field were carried out with the B3LYP/6-311G(d,p) level of theory using combinations of 3.5, 7 and 10.5 μm sine squared pulses with field strengths of 0.03 au (peak intensity of 3.15×1013 W/cm2 ) and lengths of 560 fs. A 3.5 μm pulse aligned with the C-H bond and a 10.5 μm pulse perpendicular to the C-H bond produced a larger branching ratio for HCl+ +CO than a comparable single 7 μm pulse. When the 10.5 μm pulse was delayed by one quarter of the pulse envelope, the branching ratio for the high energy product, (HCl+ +CO 73%) was a factor of three larger than the low energy product (Cl + HCO+ , 25%). By contrast, when the 3.5 μm pulse was delayed by one quarter of the pulse envelope, the branching ratio was reversed (HCl+ +CO 38%; Cl + HCO+ , 60%). Continuous wavelet analysis was used to follow the interaction of the laser with the various vibrational modes as a function of time. © 2018 Wiley Periodicals, Inc
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Born-Oppenheimer molecular dynamics
|
650 |
|
4 |
|a Strong field chemistry
|
650 |
|
4 |
|a aligned molecules
|
650 |
|
4 |
|a mode selective chemistry
|
650 |
|
4 |
|a wavelet analysis
|
700 |
1 |
|
|a Schlegel, H Bernhard
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of computational chemistry
|d 1984
|g 40(2019), 1 vom: 05. Jan., Seite 200-205
|w (DE-627)NLM098138448
|x 1096-987X
|7 nnns
|
773 |
1 |
8 |
|g volume:40
|g year:2019
|g number:1
|g day:05
|g month:01
|g pages:200-205
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/jcc.25576
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 40
|j 2019
|e 1
|b 05
|c 01
|h 200-205
|