Controlling the strong field fragmentation of ClCHO+ using two laser pulses -an ab initio molecular dynamics simulation

© 2018 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 40(2019), 1 vom: 05. Jan., Seite 200-205
1. Verfasser: Shi, Xuetao (VerfasserIn)
Weitere Verfasser: Schlegel, H Bernhard
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Born-Oppenheimer molecular dynamics Strong field chemistry aligned molecules mode selective chemistry wavelet analysis
LEADER 01000naa a22002652 4500
001 NLM290028299
003 DE-627
005 20231225063835.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.25576  |2 doi 
028 5 2 |a pubmed24n0966.xml 
035 |a (DE-627)NLM290028299 
035 |a (NLM)30368837 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shi, Xuetao  |e verfasserin  |4 aut 
245 1 0 |a Controlling the strong field fragmentation of ClCHO+ using two laser pulses -an ab initio molecular dynamics simulation 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2018 Wiley Periodicals, Inc. 
520 |a For a single, intense 7 μm linearly polarized laser pulse, we found that the branching ratio for the fragmentation of ClCHO+ → Cl + HCO+ , H + ClCO+ , HCl+ +CO depended strongly on the orientation of the molecule (J. Phys. Chem. Lett. 2012, 3 2541). The present study explores the possibility of controlling the branching ratio for fragmentation by using two independent pulses with different frequencies, alignment and delay. Born-Oppenheimer molecular dynamics simulations in the laser field were carried out with the B3LYP/6-311G(d,p) level of theory using combinations of 3.5, 7 and 10.5 μm sine squared pulses with field strengths of 0.03 au (peak intensity of 3.15×1013 W/cm2 ) and lengths of 560 fs. A 3.5 μm pulse aligned with the C-H bond and a 10.5 μm pulse perpendicular to the C-H bond produced a larger branching ratio for HCl+ +CO than a comparable single 7 μm pulse. When the 10.5 μm pulse was delayed by one quarter of the pulse envelope, the branching ratio for the high energy product, (HCl+ +CO 73%) was a factor of three larger than the low energy product (Cl + HCO+ , 25%). By contrast, when the 3.5 μm pulse was delayed by one quarter of the pulse envelope, the branching ratio was reversed (HCl+ +CO 38%; Cl + HCO+ , 60%). Continuous wavelet analysis was used to follow the interaction of the laser with the various vibrational modes as a function of time. © 2018 Wiley Periodicals, Inc 
650 4 |a Journal Article 
650 4 |a Born-Oppenheimer molecular dynamics 
650 4 |a Strong field chemistry 
650 4 |a aligned molecules 
650 4 |a mode selective chemistry 
650 4 |a wavelet analysis 
700 1 |a Schlegel, H Bernhard  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 40(2019), 1 vom: 05. Jan., Seite 200-205  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:40  |g year:2019  |g number:1  |g day:05  |g month:01  |g pages:200-205 
856 4 0 |u http://dx.doi.org/10.1002/jcc.25576  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 40  |j 2019  |e 1  |b 05  |c 01  |h 200-205