Double-buffered, heterogeneous CPU + GPU integral digestion algorithm for single-excitation calculations involving a large number of excited states

© 2018 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 39(2018), 26 vom: 05. Okt., Seite 2173-2182
1. Verfasser: Morrison, Adrian F (VerfasserIn)
Weitere Verfasser: Epifanovsky, Evgeny, Herbert, John M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article TDDFT excited states graphics processing units quantum chemistry
LEADER 01000caa a22002652 4500
001 NLM290028272
003 DE-627
005 20250224072817.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.25531  |2 doi 
028 5 2 |a pubmed25n0966.xml 
035 |a (DE-627)NLM290028272 
035 |a (NLM)30368836 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Morrison, Adrian F  |e verfasserin  |4 aut 
245 1 0 |a Double-buffered, heterogeneous CPU + GPU integral digestion algorithm for single-excitation calculations involving a large number of excited states 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2018 Wiley Periodicals, Inc. 
520 |a The most widely used quantum-chemical models for excited states are single-excitation theories, a category that includes configuration interaction with single substitutions, time-dependent density functional theory, and also a recently developed ab initio exciton model. When a large number of excited states are desired, these calculations incur a significant bottleneck in the "digestion" step in which two-electron integrals are contracted with density or density-like matrices. We present an implementation that moves this step onto graphical processing units (GPUs), and introduce a double-buffer scheme that minimizes latency by computing integrals on the central processing units (CPUs) concurrently with their digestion on the GPUs. An automatic code generation scheme simplifies the implementation of high-performance GPU kernels. For the exciton model, which requires separate excited-state calculations on each electronically coupled chromophore, the heterogeneous implementation described here results in speedups of 2-6× versus a CPU-only implementation. For traditional time-dependent density functional theory calculations, we obtain speedups of up to 5× when a large number of excited states is computed. © 2018 Wiley Periodicals, Inc 
650 4 |a Journal Article 
650 4 |a TDDFT 
650 4 |a excited states 
650 4 |a graphics processing units 
650 4 |a quantum chemistry 
700 1 |a Epifanovsky, Evgeny  |e verfasserin  |4 aut 
700 1 |a Herbert, John M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 39(2018), 26 vom: 05. Okt., Seite 2173-2182  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:39  |g year:2018  |g number:26  |g day:05  |g month:10  |g pages:2173-2182 
856 4 0 |u http://dx.doi.org/10.1002/jcc.25531  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 39  |j 2018  |e 26  |b 05  |c 10  |h 2173-2182