Single-sequence-based prediction of protein secondary structures and solvent accessibility by deep whole-sequence learning

© 2018 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 39(2018), 26 vom: 05. Okt., Seite 2210-2216
1. Verfasser: Heffernan, Rhys (VerfasserIn)
Weitere Verfasser: Paliwal, Kuldip, Lyons, James, Singh, Jaswinder, Yang, Yuedong, Zhou, Yaoqi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't backbone angles contact prediction protein structure prediction secondary structure prediction solvent accessibility prediction Proteins Solvents
LEADER 01000naa a22002652 4500
001 NLM290028221
003 DE-627
005 20231225063834.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.25534  |2 doi 
028 5 2 |a pubmed24n0966.xml 
035 |a (DE-627)NLM290028221 
035 |a (NLM)30368831 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Heffernan, Rhys  |e verfasserin  |4 aut 
245 1 0 |a Single-sequence-based prediction of protein secondary structures and solvent accessibility by deep whole-sequence learning 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.09.2019 
500 |a Date Revised 18.09.2019 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2018 Wiley Periodicals, Inc. 
520 |a Predicting protein structure from sequence alone is challenging. Thus, the majority of methods for protein structure prediction rely on evolutionary information from multiple sequence alignments. In previous work we showed that Long Short-Term Bidirectional Recurrent Neural Networks (LSTM-BRNNs) improved over regular neural networks by better capturing intra-sequence dependencies. Here we show a single-sequence-based prediction method employing LSTM-BRNNs (SPIDER3-Single), that consistently achieves Q3 accuracy of 72.5%, and correlation coefficient of 0.67 between predicted and actual solvent accessible surface area. Moreover, it yields reasonably accurate prediction of eight-state secondary structure, main-chain angles (backbone ϕ and ψ torsion angles and C α-atom-based θ and τ angles), half-sphere exposure, and contact number. The method is more accurate than the corresponding evolutionary-based method for proteins with few sequence homologs, and computationally efficient for large-scale screening of protein-structural properties. It is available as an option in the SPIDER3 server, and a standalone version for download, at http://sparks-lab.org. © 2018 Wiley Periodicals, Inc 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a backbone angles 
650 4 |a contact prediction 
650 4 |a protein structure prediction 
650 4 |a secondary structure prediction 
650 4 |a solvent accessibility prediction 
650 7 |a Proteins  |2 NLM 
650 7 |a Solvents  |2 NLM 
700 1 |a Paliwal, Kuldip  |e verfasserin  |4 aut 
700 1 |a Lyons, James  |e verfasserin  |4 aut 
700 1 |a Singh, Jaswinder  |e verfasserin  |4 aut 
700 1 |a Yang, Yuedong  |e verfasserin  |4 aut 
700 1 |a Zhou, Yaoqi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 39(2018), 26 vom: 05. Okt., Seite 2210-2216  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:39  |g year:2018  |g number:26  |g day:05  |g month:10  |g pages:2210-2216 
856 4 0 |u http://dx.doi.org/10.1002/jcc.25534  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 39  |j 2018  |e 26  |b 05  |c 10  |h 2210-2216