Rapid and repeated local adaptation to climate in an invasive plant

© 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 222(2019), 1 vom: 15. Apr., Seite 614-627
1. Verfasser: van Boheemen, Lotte A (VerfasserIn)
Weitere Verfasser: Atwater, Daniel Z, Hodgins, Kathryn A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't climate adaptation climate niche dynamics heterozygosity-fitness correlations invasion latitudinal clines local adaptation trait evolution
Beschreibung
Zusammenfassung:© 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Biological invasions provide opportunities to study evolutionary processes occurring over contemporary timescales. To explore the speed and repeatability of adaptation, we examined the divergence of life-history traits to climate, using latitude as a proxy, in the native North American and introduced European and Australian ranges of the annual plant Ambrosia artemisiifolia. We explored niche changes following introductions using climate niche dynamic models. In a common garden, we examined trait divergence by growing seeds collected across three ranges with highly distinct demographic histories. Heterozygosity-fitness associations were used to explore the effect of invasion history on potential success. We accounted for nonadaptive population differentiation using 11 598 single nucleotide polymorphisms. We revealed a centroid shift to warmer, wetter climates in the introduced ranges. We identified repeated latitudinal divergence in life-history traits, with European and Australian populations positioned at either end of the native clines. Our data indicate rapid and repeated adaptation to local climates despite the recent introductions and a bottleneck limiting genetic variation in Australia. Centroid shifts in the introduced ranges suggest adaptation to more productive environments, potentially contributing to trait divergence between the ranges
Beschreibung:Date Completed 27.02.2020
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/nph.15564