New Insights into Planar Defects in Layered α-MoO3 Crystals

The observation of regular ( h0 l) planar defects in α-MoO3 crystals can be traced back to over 60 years ago. Two mechanisms have been proposed to interpret the formation of the planar defects. One is related to the diffusion of oxygen vacancies because of thermal-driven release of oxygen atoms in v...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 34(2018), 46 vom: 20. Nov., Seite 14003-14011
1. Verfasser: Liu, Hongfei (VerfasserIn)
Weitere Verfasser: Lee, Coryl J J, Guo, Shifeng, Chi, Dongzhi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:The observation of regular ( h0 l) planar defects in α-MoO3 crystals can be traced back to over 60 years ago. Two mechanisms have been proposed to interpret the formation of the planar defects. One is related to the diffusion of oxygen vacancies because of thermal-driven release of oxygen atoms in vacuum and the consequent crystallographic shear of α-MoO3. The other is associated with redox reactions of moisture and/or hydrocarbons that give rise to H xMoO3 precipitates. Here, we report that regularly spaced (302) planar defects can be introduced into α-MoO3 belt crystals by heating in liquid sulfur at 300 °C. These defects are undetectable by both atomic force microscopy and scanning electron microscopy at the crystal surface. Raman scattering enhancement and weakening have been observed for different phonon modes of α-MoO3 at the (302) planar defects as probed from the (010) surface. Their comparisons with the Raman scattering enhancements at the edges and the argon-plasma-induced Raman spectral evolutions of the as-grown α-MoO3 belt crystals provide new insights into the planar defects with regard to their formation and characteristics
Beschreibung:Date Completed 25.01.2019
Date Revised 25.01.2019
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.8b03102