Treatment of wastewater ammonium under varying salinity conditions within the marshland upwelling system
Coastal wetlands and estuaries are impacted by nutrient loads from a variety of sources including infrequently occupied hunting and fishing camps. The marshland upwelling system (MUS) was designed to treat wastewater in the coastal environment where traditional septic systems or centralized wastewat...
Veröffentlicht in: | Environmental technology. - 1993. - 41(2020), 12 vom: 01. Mai, Seite 1504-1513 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2020
|
Zugriff auf das übergeordnete Werk: | Environmental technology |
Schlagworte: | Journal Article Wastewater treatment ammonium salinity sorption treatment wetland Ammonium Compounds Waste Water Nitrogen N762921K75 |
Zusammenfassung: | Coastal wetlands and estuaries are impacted by nutrient loads from a variety of sources including infrequently occupied hunting and fishing camps. The marshland upwelling system (MUS) was designed to treat wastewater in the coastal environment where traditional septic systems or centralized wastewater collection and treatment are not viable. A laboratory macrocosm study was designed to simulate field conditions in which domestic wastewater is treated via injection into a marsh subsurface. Treatment of wastewater nitrogen (N) utilizing the MUS was examined under high (∼20 ppt) and low (∼2 ppt) salinity conditions. Two N wastewater solutions were used, one treatment consisted of 100 mg NH4-N L-1, while a second treatment consisted of 80 mg NH4-N L-1/20 mg NO3-N L-1. The 20 ppt salinity treatment was found to have a negative impact on NH4-N sorption. The potentially mineralizable N rate was higher in the low salinity treatment, which could potentially be offset by the higher sorption capacity at lower salinities. The background salinity of the local groundwater should be considered as the salinity will play a role in the longevity of the system |
---|---|
Beschreibung: | Date Completed 22.04.2020 Date Revised 07.12.2022 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1479-487X |
DOI: | 10.1080/09593330.2018.1540660 |