Controlled Assembly of Nanocellulose-Stabilized Emulsions with Periodic Liquid Crystal-in-Liquid Crystal Organization

Colloidal particles combined with a polymer can be used to stabilize an oil-water interface forming stable emulsions. Here, we described a novel liquid crystal (LC)-in-LC emulsion composed of a nematic oil phase and a cholesteric or nematic aqueous cellulose nanocrystal (CNC) continuous phase. The g...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 34(2018), 44 vom: 06. Nov., Seite 13263-13273
1. Verfasser: Chu, Guang (VerfasserIn)
Weitere Verfasser: Vasilyev, Gleb, Vilensky, Rita, Boaz, Mor, Zhang, Ruiyan, Martin, Patrick, Dahan, Nitsan, Deng, Shengwei, Zussman, Eyal
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:Colloidal particles combined with a polymer can be used to stabilize an oil-water interface forming stable emulsions. Here, we described a novel liquid crystal (LC)-in-LC emulsion composed of a nematic oil phase and a cholesteric or nematic aqueous cellulose nanocrystal (CNC) continuous phase. The guest oil droplets were stabilized and suspended in liquid-crystalline CNCs, inducing distortions and topological defects inside the host LC phase. These emulsions exhibited anisotropic interactions between the two LCs that depended on the diameter-to-pitch ratio of suspended guest droplets and the host CNC cholesteric phase. When the ratio was high, oil droplets were embedded into a cholesteric shell with a concentric packing of CNC layers and took on a radial orientation of the helical axis. Otherwise, discrete surface-trapped LC droplet assemblies with long-range ordering were obtained, mimicking the fingerprint configuration of the cholesteric phase. Thus, the LC-in-LC emulsions presented here define a new class of ordered soft matter in which both nematic and cholesteric LC ordering can be well-manipulated
Beschreibung:Date Completed 09.01.2019
Date Revised 09.01.2019
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.8b02163