Zwitterion-Functionalized Graphene Oxide Incorporated Polyamide Membranes with Improved Antifouling Properties

In this study, zwitterionic polymer poly(sulfobetaine methacrylate) (PSBMA) functionalized graphene oxide (GO) nanocomposites (GO-PSBMA) were synthesized and incorporated into the active layer of a polyamide membrane to improve its water perm-selectivity and fouling-resistant properties. GO-PSBMA na...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 35(2019), 5 vom: 05. Feb., Seite 1513-1525
1. Verfasser: Ma, Wen (VerfasserIn)
Weitere Verfasser: Chen, Tiantian, Nanni, Santino, Yang, Liuqing, Ye, Zhibin, Rahaman, Md Saifur
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:In this study, zwitterionic polymer poly(sulfobetaine methacrylate) (PSBMA) functionalized graphene oxide (GO) nanocomposites (GO-PSBMA) were synthesized and incorporated into the active layer of a polyamide membrane to improve its water perm-selectivity and fouling-resistant properties. GO-PSBMA nanocomposite contained covalently tethered PSBMA brushes on GO sheets, which were grown by activators regenerated by the electron transfer-atom transfer radical polymerization technique via the "graft-from" strategy. The grafting of zwitterionic PSBMA partially neutralized the surface charge of GO and increased its dispersibility in organic solvent. The incorporation of the GO-PSBMA-1h nanocomposite in the active layer of the polyamide membrane significantly improved surface hydrophilicity of the membrane and reduced its charge density. A near twofold increase in water permeation flux, with the nonsignificant change in MgSO4 and NaCl rejection, was achieved after the incorporation of 0.3 wt % of GO-PSBMA-1h in the membrane casting solution. With an improved water affinity, the fabricated nanocomposite membrane exhibited a near 80% reduction in bacterial ( Escherichia coli) attachment in comparison to the control membrane, even after 48 h of culture. In a crossflow filtration test, the nanocomposite membrane exhibited less of a reduction in the flux associated with bovine serum albumin fouling and salt ion scaling. The results demonstrated that incorporating zwitterionic polymer-decorated GO in the polyamide skin layer is a promising method to fabricate thin film nanocomposite membranes with improved water flux and fouling resistance
Beschreibung:Date Revised 20.11.2019
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.8b02044