The β5 subunit is essential for intact 26S proteasome assembly to specifically promote plant autotrophic growth under salt stress
© 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Veröffentlicht in: | The New phytologist. - 1979. - 221(2019), 3 vom: 22. Feb., Seite 1359-1368 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2019
|
Zugriff auf das übergeordnete Werk: | The New phytologist |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Arabidopsis 20S proteasome assembly ABI5 PBE1 autotrophic growth stress proteasome ABI5 protein, Arabidopsis Arabidopsis Proteins mehr... |
Zusammenfassung: | © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust. The ubiquitin 26S proteasome (26SP) system efficiently degrades many key regulators of plant development. 26SP consists of two subcomplexes: the catalytic 20S core particle (CP) and the 19S regulatory particle (RP). Previous studies have focused on 19S RP; whether there is a specific subunit in 20S CP that has a stress-related biological function in plants is unclear. PBE1, one of the β5 subunits of Arabidopsis proteasome CP, is essential for the assembly and proteolytic activity of 26SP in salt-stressed seedlings. The expression of PBE1 is stress-induced. During the transition from seed germination to autotrophic growth in salt-stressed seedlings, loss of PBE1 function results specifically in arrest in developmental transition but not in germination and post-germination growth. PBE1 is also important for other types of proteasome stress and Endoplasmic Reticulum (ER) stress. PBE1 modulates the protein level of the transcription factor ABI5 and thereby down-regulates the expression of several genes downstream of this key regulator which are known to be essential for plant growth under stress. Collectively, our results showed PBE1-mediated intact proteasome assembly that is essential for successful autotrophic growth, and revealed how PBE1 mediated stress proteasome functions to control both proteasome activity and abscisic acid (ABA)-mediated stress signaling in plants |
---|---|
Beschreibung: | Date Completed 21.01.2020 Date Revised 30.09.2020 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1469-8137 |
DOI: | 10.1111/nph.15471 |