|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM289799945 |
003 |
DE-627 |
005 |
20231225063337.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2019 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201803637
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0965.xml
|
035 |
|
|
|a (DE-627)NLM289799945
|
035 |
|
|
|a (NLM)30345558
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Jung, Yei Hwan
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Bioinspired Electronics for Artificial Sensory Systems
|
264 |
|
1 |
|c 2019
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 12.09.2019
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a Humans have a myriad of sensory receptors in different sense organs that form the five traditionally recognized senses of sight, hearing, smell, taste, and touch. These receptors detect diverse stimuli originating from the world and turn them into brain-interpretable electrical impulses for sensory cognitive processing, enabling us to communicate and socialize. Developments in biologically inspired electronics have led to the demonstration of a wide range of electronic sensors in all five traditional categories, with the potential to impact a broad spectrum of applications. Here, recent advances in bioinspired electronics that can function as potential artificial sensory systems, including prosthesis and humanoid robots are reviewed. The mechanisms and demonstrations in mimicking biological sensory systems are individually discussed and the remaining future challenges that must be solved for their versatile use are analyzed. Recent progress in bioinspired electronic sensors shows that the five traditional senses are successfully mimicked using novel electronic components and the performance regarding sensitivity, selectivity, and accuracy have improved to levels that outperform human sensory organs. Finally, neural interfacing techniques for connecting artificial sensors to the brain are discussed
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Review
|
650 |
|
4 |
|a bioinspired electronics
|
650 |
|
4 |
|a biomimicry
|
650 |
|
4 |
|a humanoid robots
|
650 |
|
4 |
|a prosthesis
|
650 |
|
4 |
|a receptors
|
650 |
|
4 |
|a sensors
|
650 |
|
4 |
|a sensory systems
|
700 |
1 |
|
|a Park, Byeonghak
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, Jong Uk
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, Tae-Il
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 31(2019), 34 vom: 22. Aug., Seite e1803637
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:31
|g year:2019
|g number:34
|g day:22
|g month:08
|g pages:e1803637
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201803637
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 31
|j 2019
|e 34
|b 22
|c 08
|h e1803637
|