Dynamic air supply models add realism to the evaluation of control strategies in water resource recovery facilities
This paper introduces the application of a fully dynamic air distribution model integrated with a biokinetic process model and a detailed process control model. By using a fully dynamic air distribution model, it is possible to understand the relationships between aeration equipment, control algorit...
Veröffentlicht in: | Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 78(2018), 5-6 vom: 19. Okt., Seite 1104-1114 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2018
|
Zugriff auf das übergeordnete Werk: | Water science and technology : a journal of the International Association on Water Pollution Research |
Schlagworte: | Journal Article Waste Water Ammonia 7664-41-7 Oxygen S88TT14065 |
Zusammenfassung: | This paper introduces the application of a fully dynamic air distribution model integrated with a biokinetic process model and a detailed process control model. By using a fully dynamic air distribution model, it is possible to understand the relationships between aeration equipment, control algorithms, process performance, and energy consumption, thus leading to a significantly more realistic prediction of water resource recovery facility (WRRF) performance. Consequently, this leads to an improved design of aeration control strategies and equipment. A model-based audit has been performed for the Girona WRRF with the goal of providing a more objective evaluation of energy reduction strategies. Currently, the Girona plant uses dissolved oxygen control and has been manually optimised for energy consumption. Results from a detailed integrated model show that the implementation of an ammonia-based aeration controller, a redistribution of the diffusers, and the installation of a smaller blower lead to energy savings between 12 and 21%, depending on wastewater temperature. The model supported the development of control strategies that counter the effects of current equipment limitations, such as tapered diffuser distribution, or over-sized blowers. The latter causes an intermittent aeration pattern with blowers switching on and off, increasing wear of the equipment |
---|---|
Beschreibung: | Date Completed 25.02.2019 Date Revised 07.12.2022 published: Print Citation Status MEDLINE |
ISSN: | 0273-1223 |
DOI: | 10.2166/wst.2018.356 |