SEQ2SEQ-VIS : A Visual Debugging Tool for Sequence-to-Sequence Models

Neural sequence-to-sequence models have proven to be accurate and robust for many sequence prediction tasks, and have become the standard approach for automatic translation of text. The models work with a five-stage blackbox pipeline that begins with encoding a source sequence to a vector space and...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - (2018) vom: 17. Okt.
1. Verfasser: Strobelt, Hendrik (VerfasserIn)
Weitere Verfasser: Gehrmann, Sebastian, Behrisch, Michael, Perer, Adam, Pfister, Hanspeter, Rush, Alexander M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM289694302
003 DE-627
005 20240229162010.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2018.2865044  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM289694302 
035 |a (NLM)30334796 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Strobelt, Hendrik  |e verfasserin  |4 aut 
245 1 0 |a SEQ2SEQ-VIS  |b A Visual Debugging Tool for Sequence-to-Sequence Models 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Neural sequence-to-sequence models have proven to be accurate and robust for many sequence prediction tasks, and have become the standard approach for automatic translation of text. The models work with a five-stage blackbox pipeline that begins with encoding a source sequence to a vector space and then decoding out to a new target sequence. This process is now standard, but like many deep learning methods remains quite difficult to understand or debug. In this work, we present a visual analysis tool that allows interaction and "what if"-style exploration of trained sequence-to-sequence models through each stage of the translation process. The aim is to identify which patterns have been learned, to detect model errors, and to probe the model with counterfactual scenario. We demonstrate the utility of our tool through several real-world sequence-to-sequence use cases on large-scale models 
650 4 |a Journal Article 
700 1 |a Gehrmann, Sebastian  |e verfasserin  |4 aut 
700 1 |a Behrisch, Michael  |e verfasserin  |4 aut 
700 1 |a Perer, Adam  |e verfasserin  |4 aut 
700 1 |a Pfister, Hanspeter  |e verfasserin  |4 aut 
700 1 |a Rush, Alexander M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g (2018) vom: 17. Okt.  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g year:2018  |g day:17  |g month:10 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2018.2865044  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2018  |b 17  |c 10