Dual-Programmable Shape-Morphing and Self-Healing Organohydrogels Through Orthogonal Supramolecular Heteronetworks

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 30(2018), 51 vom: 20. Dez., Seite e1804435
1. Verfasser: Zhao, Ziguang (VerfasserIn)
Weitere Verfasser: Zhuo, Shuyun, Fang, Ruochen, Zhang, Longhao, Zhou, Xintao, Xu, Yichao, Zhang, Jianqi, Dong, Zhichao, Jiang, Lei, Liu, Mingjie
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article dual-programmable shape morphing gel materials orthogonal supramolecular heteronetworks programmable materials self-healing
Beschreibung
Zusammenfassung:© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Programmable materials that can change their inherent shapes or properties are highly desirable due to their promising applications. However, among various programmable shape-morphing materials, the single control route allows temporary states to recover the unchangeable former state, thus lacking the sophisticated programmability for their shape-encoding behaviors and mechanics. Herein, dual-programmable shape-morphing organohydrogels featuring supramolecular heteronetworks are developed. In the system, the metallo-supramolecular hydrogel framework and micro-organogels featuring semicrystalline comb-type networks independently respond to different stimuli, thereby providing orthogonal dual-switching mechanics and ultrahigh mechanical strength. The supramolecular heteronetworks also possess excellent self-healing properties. More notably, such orthogonal supramolecular heteronetworks demonstrate hierarchical shape morphing performance that far exceeds conventional shape-morphing materials. Utilizing this dual programming strategy of the orthogonal supramolecular heteronetworks, the material's permanent shape can be manipulated in a step-wise shape morphing process, thereby realizing sophisticated shape changes with a high degree of freedom. The organohydrogels can act as a biomimetic smart device for the on-demand control of unidirectional liquid transport. Based on these characteristics, it is anticipated that the supramolecular organohydrogels may serve as adaptive programmable materials for a variety of applications
Beschreibung:Date Completed 17.12.2018
Date Revised 30.09.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201804435