Chiral Upconversion Heterodimers for Quantitative Analysis and Bioimaging of Antibiotic-Resistant Bacteria In Vivo
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 30(2018), 50 vom: 12. Dez., Seite e1804241 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2018
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article chirality drug-resistance heterodimers inflammation therapy polymyxin upconversion nanoparticles Anti-Bacterial Agents |
Zusammenfassung: | © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Heterodimers of upconversion nanoparticles (UCNPs) and gold yolk-shell nanoparticles are fabricated for the quantification of polymyxin-B-resistant Escherichia coli. They produce two signals, circular dichroism (CD) and upconversion luminescence (UCL). Interestingly, due to the different affinity of polymyxin B for sensitive and resistant strain, as the concentration of polymyxin B increases, the amount of UCNPs in sensitive bacteria increases sharply, increasing the intracellular UCL signal at a low polymyxin B concentration immobilized on the UCNP. The CD intensity is correspondingly reduced as the amount of UCNPs in solution decreased. Meanwhile, for polymyxin-B-resistant strain, the intracellular UCL increases slowly even in a high polymyxin B concentration, and the CD intensity in solution is also enhanced because of the inefficient entering of UCNP. Therefore, based on the concentration of polymyxin B coupled to the UCNPs, the levels of polymyxin-B-resistant bacteria can be detected with dual signals. Importantly, with 980 nm irradiation, both polymyxin-B-sensitive strains and polymyxin-resistant bacteria used to induce infection in mice are detected with UCL imaging in vivo and treated well with photodynamic therapy. This novel dual-mode heterodimer has potential utility for the advanced surveillance and control of drug-resistant bacteria |
---|---|
Beschreibung: | Date Completed 14.03.2019 Date Revised 30.09.2020 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.201804241 |