Online Data Organizer : Micro-Video Categorization by Structure-Guided Multimodal Dictionary Learning

Micro-videos have rapidly become one of the most dominant trends in the era of social media. Accordingly, how to organize them draws our attention. Distinct from the traditional long videos that would have multi-site scenes and tolerate the hysteresis, a micro-video: 1) usually records contents at o...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 3 vom: 10. März, Seite 1235-1247
Auteur principal: Liu, Meng (Auteur)
Autres auteurs: Nie, Liqiang, Wang, Xiang, Tian, Qi, Chen, Baoquan
Format: Article en ligne
Langue:English
Publié: 2019
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM289428556
003 DE-627
005 20250224054931.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2875363  |2 doi 
028 5 2 |a pubmed25n0964.xml 
035 |a (DE-627)NLM289428556 
035 |a (NLM)30307868 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Meng  |e verfasserin  |4 aut 
245 1 0 |a Online Data Organizer  |b Micro-Video Categorization by Structure-Guided Multimodal Dictionary Learning 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 08.11.2018 
500 |a Date Revised 08.11.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Micro-videos have rapidly become one of the most dominant trends in the era of social media. Accordingly, how to organize them draws our attention. Distinct from the traditional long videos that would have multi-site scenes and tolerate the hysteresis, a micro-video: 1) usually records contents at one specific venue within a few seconds. The venues are structured hierarchically regarding their category granularity. This motivates us to organize the micro-videos via their venue structure. 2) timely circulates over social networks. Thus, the timeliness of micro-videos desires effective online processing. However, only 1.22% of micro-videos are labeled with venue information when uploaded at the mobile end. To address this problem, we present a framework to organize the micro-videos online. In particular, we first build a structure-guided multi-modal dictionary learning model to learn the concept-level micro-video representation by jointly considering their venue structure and modality relatedness. We then develop an online learning algorithm to incrementally and efficiently strengthen our model, as well as categorize the micro-videos into a tree structure. Extensive experiments on a real-world data set validate our model well. In addition, we have released the codes to facilitate the research in the community 
650 4 |a Journal Article 
700 1 |a Nie, Liqiang  |e verfasserin  |4 aut 
700 1 |a Wang, Xiang  |e verfasserin  |4 aut 
700 1 |a Tian, Qi  |e verfasserin  |4 aut 
700 1 |a Chen, Baoquan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 28(2019), 3 vom: 10. März, Seite 1235-1247  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:28  |g year:2019  |g number:3  |g day:10  |g month:03  |g pages:1235-1247 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2875363  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2019  |e 3  |b 10  |c 03  |h 1235-1247