Context-Aware Mouse Behavior Recognition Using Hidden Markov Models

Automated recognition of mouse behaviors is crucial in studying psychiatric and neurologic diseases. To achieve this objective, it is very important to analyze the temporal dynamics of mouse behaviors. In particular, the change between mouse neighboring actions is swift in a short period. In this pa...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 3 vom: 10. März, Seite 1133-1148
1. Verfasser: Jiang, Zheheng (VerfasserIn)
Weitere Verfasser: Crookes, Danny, Green, Brian D, Zhao, Yunfeng, Ma, Haiping, Li, Ling, Zhang, Shengping, Tao, Dacheng, Zhou, Huiyu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM289428505
003 DE-627
005 20250224054931.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2875335  |2 doi 
028 5 2 |a pubmed25n0964.xml 
035 |a (DE-627)NLM289428505 
035 |a (NLM)30307863 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jiang, Zheheng  |e verfasserin  |4 aut 
245 1 0 |a Context-Aware Mouse Behavior Recognition Using Hidden Markov Models 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 08.11.2018 
500 |a Date Revised 08.11.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Automated recognition of mouse behaviors is crucial in studying psychiatric and neurologic diseases. To achieve this objective, it is very important to analyze the temporal dynamics of mouse behaviors. In particular, the change between mouse neighboring actions is swift in a short period. In this paper, we develop and implement a novel hidden Markov model (HMM) algorithm to describe the temporal characteristics of mouse behaviors. In particular, we here propose a hybrid deep learning architecture, where the first unsupervised layer relies on an advanced spatial-temporal segment Fisher vector encoding both visual and contextual features. Subsequent supervised layers based on our segment aggregate network are trained to estimate the state-dependent observation probabilities of the HMM. The proposed architecture shows the ability to discriminate between visually similar behaviors and results in high recognition rates with the strength of processing imbalanced mouse behavior datasets. Finally, we evaluate our approach using JHuang's and our own datasets, and the results show that our method outperforms other state-of-the-art approaches 
650 4 |a Journal Article 
700 1 |a Crookes, Danny  |e verfasserin  |4 aut 
700 1 |a Green, Brian D  |e verfasserin  |4 aut 
700 1 |a Zhao, Yunfeng  |e verfasserin  |4 aut 
700 1 |a Ma, Haiping  |e verfasserin  |4 aut 
700 1 |a Li, Ling  |e verfasserin  |4 aut 
700 1 |a Zhang, Shengping  |e verfasserin  |4 aut 
700 1 |a Tao, Dacheng  |e verfasserin  |4 aut 
700 1 |a Zhou, Huiyu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 28(2019), 3 vom: 10. März, Seite 1133-1148  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:28  |g year:2019  |g number:3  |g day:10  |g month:03  |g pages:1133-1148 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2875335  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2019  |e 3  |b 10  |c 03  |h 1133-1148