Antisolvent with an Ultrawide Processing Window for the One-Step Fabrication of Efficient and Large-Area Perovskite Solar Cells
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Publié dans: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 30(2018), 49 vom: 15. Dez., Seite e1802763 |
---|---|
Auteur principal: | |
Autres auteurs: | , , , , , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2018
|
Accès à la collection: | Advanced materials (Deerfield Beach, Fla.) |
Sujets: | Journal Article anisole antisolvent hydrogen bonding perovskite solar cells process window |
Résumé: | © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Photovoltaic technologies based on perovskite absorber materials have led this optoelectronic field into a brand-new horizon. However, the present antisolvents used in the one-step spin-coating method always encounter problems with the very narrow process window. Herein, anisole is introduced into the one-step spin-coating method, and the technology is developed to fabricate perovskite thin films with ultrawide processing window with a dimethylformamide (DMF):dimethyl sulfoxide (DMSO) ratio varying from 6:4 to 9:1 in the precursor solution, anisole dripping time ranging from 5 to 25 s, and an antisolvent volume varying from 0.1 to 0.9 mL. Perovskite thin films as large as 100 cm2 are successfully fabricated using this method. Maximum photoelectric conversion efficiencies of 19.76% for small-area (0.14 cm2 ) and 17.39% for large-area (1.08 cm2 ) perovskite solar cell devices are obtained. It is also found that there are intermolecular hydrogen-bonding forces between anisole and DMF/DMSO that play critical roles in the wide process window. These results provide a deeper understanding of the crystallizing procedure of perovskite during the one-step spin-coating process |
---|---|
Description: | Date Completed 17.12.2018 Date Revised 01.10.2020 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.201802763 |