Quantum dynamics of vibration-vibration energy transfer for vibrationally excited HF colliding with H2

© 2018 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 40(2019), 10 vom: 15. Apr., Seite 1084-1090
1. Verfasser: Yang, Dongzheng (VerfasserIn)
Weitere Verfasser: Hu, Xixi, Xie, Daiqian
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article energy transfer quantum dynamics rate constant vibrational transition
LEADER 01000naa a22002652 4500
001 NLM289416434
003 DE-627
005 20231225062512.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.25598  |2 doi 
028 5 2 |a pubmed24n0964.xml 
035 |a (DE-627)NLM289416434 
035 |a (NLM)30306602 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Dongzheng  |e verfasserin  |4 aut 
245 1 0 |a Quantum dynamics of vibration-vibration energy transfer for vibrationally excited HF colliding with H2 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2018 Wiley Periodicals, Inc. 
520 |a The rate constants for H2 -HF energy transfer processes, especially for those in vibrationally excited states, are very demanding in astrophysics and chemical laser engineering, especially for those in vibrationally excited states. Based on our recent potential energy surface, we used the coupled-states approximation including the nearest neighboring Coriolis couplings with energy-based local basis set to perform dynamics calculation for the H2 -HF energy transfer system. Rate constants for vibrational transitions (1; 3) → (0; 4), (1; 3) → (2; 2), and (0; 3) → (1; 2) were obtained. For state-to-state rate constants, transitions that have no internal angular momentum gap dominate at high temperatures. The vibrational-resolved rate constant for (1; 3) → (0; 4) initially decreases and then increases with the temperature, while those for (1; 3) → (2; 2), and (0; 3) → (1; 2) transitions monotonically increase. The calculated rate constants are in good agreement with the available experimental results. These dynamical data can be further applied to the numerical simulation of hydrogen fluoride chemical laser. © 2018 Wiley Periodicals, Inc 
650 4 |a Journal Article 
650 4 |a energy transfer 
650 4 |a quantum dynamics 
650 4 |a rate constant 
650 4 |a vibrational transition 
700 1 |a Hu, Xixi  |e verfasserin  |4 aut 
700 1 |a Xie, Daiqian  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 40(2019), 10 vom: 15. Apr., Seite 1084-1090  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:40  |g year:2019  |g number:10  |g day:15  |g month:04  |g pages:1084-1090 
856 4 0 |u http://dx.doi.org/10.1002/jcc.25598  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 40  |j 2019  |e 10  |b 15  |c 04  |h 1084-1090