A kinetics study of ligand substitution reaction on dinuclear platinum complexes : Stochastic versus deterministic approach

© 2018 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 40(2019), 1 vom: 05. Jan., Seite 279-285
1. Verfasser: Iioka, Tatsuya (VerfasserIn)
Weitere Verfasser: Takahashi, Satoshi, Yoshida, Yuichiro, Matsumura, Yoshihiro, Hiraoka, Shuichi, Sato, Hirofumi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article ligand substitution reaction master equation self-assembly stochastic process
Beschreibung
Zusammenfassung:© 2018 Wiley Periodicals, Inc.
The kinetics on a basic ligand substitution reaction on dinuclear platinum complexes [Pt(PEt3 )2 PhPt(PEt3 )2 ]2+ and [Pt(PEt3 )2 PhCOPhPt(PEt3 )2 ]2+ , with the ligands pyridine and 3-chloropyridine, is studied. This is a fundamental step in a self-assembly, and the time evolution has been observed with a new experimental technique, QASAP (quantitative analysis of self-assembly process), which is recently developed by Hiraoka's group. As a result of numerical calculations based on master equation, we succeed in specifying the reaction rate constants with a simple reaction model. In addition, the time evolutions of all the intermediate components produced and consumed in chemical reaction are revealed, including those unobserved in the experiments. The convergence behavior of the existence ratios of specific chemical species calculated with the stochastic algorithm method is compared with those obtained from deterministic formalism based on rate equations, revealing a clear dependence on the number of constituent molecules. © 2018 Wiley Periodicals, Inc
Beschreibung:Date Revised 20.11.2019
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1096-987X
DOI:10.1002/jcc.25588