CamStyle : A Novel Data Augmentation Method for Person Re-Identification

Person re-identification (re-ID) is a cross-camera retrieval task that suffers from image style variations caused by different cameras. The art implicitly addresses this problem by learning a camera-invariant descriptor subspace. In this paper, we explicitly consider this challenge by introducing ca...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 3 vom: 08. März, Seite 1176-1190
1. Verfasser: Zhong, Zhun (VerfasserIn)
Weitere Verfasser: Zheng, Liang, Zheng, Zhedong, Li, Shaozi, Yang, Yi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM289315476
003 DE-627
005 20231225062300.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2874313  |2 doi 
028 5 2 |a pubmed24n0964.xml 
035 |a (DE-627)NLM289315476 
035 |a (NLM)30296233 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhong, Zhun  |e verfasserin  |4 aut 
245 1 0 |a CamStyle  |b A Novel Data Augmentation Method for Person Re-Identification 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 08.11.2018 
500 |a Date Revised 08.11.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Person re-identification (re-ID) is a cross-camera retrieval task that suffers from image style variations caused by different cameras. The art implicitly addresses this problem by learning a camera-invariant descriptor subspace. In this paper, we explicitly consider this challenge by introducing camera style (CamStyle). CamStyle can serve as a data augmentation approach that reduces the risk of deep network overfitting and that smooths the CamStyle disparities. Specifically, with a style transfer model, labeled training images can be style transferred to each camera, and along with the original training samples, form the augmented training set. This method, while increasing data diversity against overfitting, also incurs a considerable level of noise. In the effort to alleviate the impact of noise, the label smooth regularization (LSR) is adopted. The vanilla version of our method (without LSR) performs reasonably well on few camera systems in which overfitting often occurs. With LSR, we demonstrate consistent improvement in all systems regardless of the extent of overfitting. We also report competitive accuracy compared with the state of the art on Market-1501 and DukeMTMC-re-ID. Importantly, CamStyle can be employed to the challenging problems of one view learning and unsupervised domain adaptation (UDA) in person re-identification (re-ID), both of which have critical research and application significance. The former only has labeled data in one camera view and the latter only has labeled data in the source domain. Experimental results show that CamStyle significantly improves the performance of the baseline in the two problems. Specially, for UDA, CamStyle achieves state-of-the-art accuracy based on a baseline deep re-ID model on Market-1501 and DukeMTMC-reID. Our code is available at: https://github.com/zhunzhong07/CamStyle 
650 4 |a Journal Article 
700 1 |a Zheng, Liang  |e verfasserin  |4 aut 
700 1 |a Zheng, Zhedong  |e verfasserin  |4 aut 
700 1 |a Li, Shaozi  |e verfasserin  |4 aut 
700 1 |a Yang, Yi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 28(2019), 3 vom: 08. März, Seite 1176-1190  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:28  |g year:2019  |g number:3  |g day:08  |g month:03  |g pages:1176-1190 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2874313  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2019  |e 3  |b 08  |c 03  |h 1176-1190