Learning Compact Features for Human Activity Recognition Via Probabilistic First-Take-All

With the popularity of mobile sensor technology, smart wearable devices open a unprecedented opportunity to solve the challenging human activity recognition (HAR) problem by learning expressive representations from the multi-dimensional daily sensor signals. This inspires us to develop a new algorit...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 42(2020), 1 vom: 08. Jan., Seite 126-139
1. Verfasser: Ye, Jun (VerfasserIn)
Weitere Verfasser: Qi, Guo-Jun, Zhuang, Naifan, Hu, Hao, Hua, Kien A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
Beschreibung
Zusammenfassung:With the popularity of mobile sensor technology, smart wearable devices open a unprecedented opportunity to solve the challenging human activity recognition (HAR) problem by learning expressive representations from the multi-dimensional daily sensor signals. This inspires us to develop a new algorithm applicable to both camera-based and wearable sensor-based HAR systems. Although competitive classification accuracy has been reported, existing methods often face the challenge of distinguishing visually similar activities composed of activity patterns in different temporal orders. In this paper, we propose a novel probabilistic algorithm to compactly encode temporal orders of activity patterns for HAR. Specifically, the algorithm learns an optimal set of latent patterns such that their temporal structures really matter in recognizing different human activities. Then, a novel probabilistic First-Take-All (pFTA) approach is introduced to generate compact features from the orders of these latent patterns to encode the entire sequence, and the temporal structural similarity between different sequences can be efficiently measured by the Hamming distance between compact features. Experiments on three public HAR datasets show the proposed pFTA approach can achieve competitive performance in terms of accuracy as well as efficiency
Beschreibung:Date Completed 18.12.2020
Date Revised 18.12.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2018.2874455