Comparative characterization of putative chitin deacetylases from Phaeodactylum tricornutum and Thalassiosira pseudonana highlights the potential for distinct chitin-based metabolic processes in diatoms

© 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 221(2019), 4 vom: 01. März, Seite 1890-1905
1. Verfasser: Shao, Zhanru (VerfasserIn)
Weitere Verfasser: Thomas, Yann, Hembach, Lea, Xing, Xiaohui, Duan, Delin, Moerschbacher, Bruno M, Bulone, Vincent, Tirichine, Leila, Bowler, Chris
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Comparative Study Journal Article Research Support, Non-U.S. Gov't Phaeodactylum tricornutum Thalassiosira pseudonana chitin chitin deacetylase chitosan enzymatic activity gene transformation mehr... subcellular localization Polysaccharides Recombinant Fusion Proteins Chitin 1398-61-4 Green Fluorescent Proteins 147336-22-9 Chitosan 9012-76-4 Amidohydrolases EC 3.5.- EC 3.5.1.41
LEADER 01000naa a22002652 4500
001 NLM289241251
003 DE-627
005 20231225062123.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1111/nph.15510  |2 doi 
028 5 2 |a pubmed24n0964.xml 
035 |a (DE-627)NLM289241251 
035 |a (NLM)30288745 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shao, Zhanru  |e verfasserin  |4 aut 
245 1 0 |a Comparative characterization of putative chitin deacetylases from Phaeodactylum tricornutum and Thalassiosira pseudonana highlights the potential for distinct chitin-based metabolic processes in diatoms 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.01.2020 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust. 
520 |a Chitin is generally considered to be present in centric diatoms but not in pennate species. Many aspects of chitin biosynthetic pathways have not been explored in diatoms. We retrieved chitin metabolic genes from pennate (Phaeodactylum tricornutum) and centric (Thalassiosira pseudonana) diatom genomes. Chitin deacetylase (CDA) genes from each genome (PtCDA and TpCDA) were overexpressed in P. tricornutum. We performed comparative analysis of their sequence structure, phylogeny, transcriptional profiles, localization and enzymatic activities. The chitin relevant proteins show complex subcellular compartmentation. PtCDA was likely acquired by horizontal gene transfer from prokaryotes, whereas TpCDA has closer relationships with sequences in Opisthokonta. Using transgenic P. tricornutum lines expressing CDA-green fluorescent protein (GFP) fusion proteins, PtCDA predominantly localizes to Golgi apparatus whereas TpCDA localizes to endoplasmic reticulum/chloroplast endoplasmic reticulum membrane. CDA-GFP overexpression upregulated the transcription of chitin synthases and potentially enhanced the ability of chitin synthesis. Although both CDAs are active on GlcNAc5 , TpCDA is more active on the highly acetylated chitin polymer DA60. We have addressed the ambiguous characters of CDAs from P. tricornutum and T. pseudonana. Differences in localization, evolution, expression and activities provide explanations underlying the greater potential of centric diatoms for chitin biosynthesis. This study paves the way for in vitro applications of novel CDAs 
650 4 |a Comparative Study 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Phaeodactylum tricornutum 
650 4 |a Thalassiosira pseudonana 
650 4 |a chitin 
650 4 |a chitin deacetylase 
650 4 |a chitosan 
650 4 |a enzymatic activity 
650 4 |a gene transformation 
650 4 |a subcellular localization 
650 7 |a Polysaccharides  |2 NLM 
650 7 |a Recombinant Fusion Proteins  |2 NLM 
650 7 |a Chitin  |2 NLM 
650 7 |a 1398-61-4  |2 NLM 
650 7 |a Green Fluorescent Proteins  |2 NLM 
650 7 |a 147336-22-9  |2 NLM 
650 7 |a Chitosan  |2 NLM 
650 7 |a 9012-76-4  |2 NLM 
650 7 |a Amidohydrolases  |2 NLM 
650 7 |a EC 3.5.-  |2 NLM 
650 7 |a chitin deacetylase  |2 NLM 
650 7 |a EC 3.5.1.41  |2 NLM 
700 1 |a Thomas, Yann  |e verfasserin  |4 aut 
700 1 |a Hembach, Lea  |e verfasserin  |4 aut 
700 1 |a Xing, Xiaohui  |e verfasserin  |4 aut 
700 1 |a Duan, Delin  |e verfasserin  |4 aut 
700 1 |a Moerschbacher, Bruno M  |e verfasserin  |4 aut 
700 1 |a Bulone, Vincent  |e verfasserin  |4 aut 
700 1 |a Tirichine, Leila  |e verfasserin  |4 aut 
700 1 |a Bowler, Chris  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t The New phytologist  |d 1979  |g 221(2019), 4 vom: 01. März, Seite 1890-1905  |w (DE-627)NLM09818248X  |x 1469-8137  |7 nnns 
773 1 8 |g volume:221  |g year:2019  |g number:4  |g day:01  |g month:03  |g pages:1890-1905 
856 4 0 |u http://dx.doi.org/10.1111/nph.15510  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 221  |j 2019  |e 4  |b 01  |c 03  |h 1890-1905