PCA in High Dimensions : An orientation

When the data are high dimensional, widely used multivariate statistical methods such as principal component analysis can behave in unexpected ways. In settings where the dimension of the observations is comparable to the sample size, upward bias in sample eigenvalues and inconsistency of sample eig...

Description complète

Détails bibliographiques
Publié dans:Proceedings of the IEEE. Institute of Electrical and Electronics Engineers. - 1998. - 106(2018), 8 vom: 11. Aug., Seite 1277-1292
Auteur principal: Johnstone, Iain M (Auteur)
Autres auteurs: Paul, Debashis
Format: Article en ligne
Langue:English
Publié: 2018
Accès à la collection:Proceedings of the IEEE. Institute of Electrical and Electronics Engineers
Sujets:Journal Article Marchenko-Pastur distribution Tracy-Widom law phase transition phenomena principal component analysis random matrix theory spiked covariance model