Morphological Transitions of Water Channels Induced by Vertical Vibrations

We report the results of comprehensive experiments and numerical calculations of interfacial morphologies of water confined to the hydrophilic top face of rectangular posts subjected to vertical vibrations. In response to mechanical driving, an initially flat liquid channel is collected into a liqui...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 34(2018), 43 vom: 30. Okt., Seite 12882-12888
1. Verfasser: Sartori, Paolo (VerfasserIn)
Weitere Verfasser: Bonato, Luca, Delfitto, Giorgio, Pierno, Matteo, Mistura, Giampaolo, Semprebon, Ciro, Brinkmann, Martin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:We report the results of comprehensive experiments and numerical calculations of interfacial morphologies of water confined to the hydrophilic top face of rectangular posts subjected to vertical vibrations. In response to mechanical driving, an initially flat liquid channel is collected into a liquid bulge that forms in the center of the rectangular post if the acceleration exceeds a certain threshold. The bulge morphology persists after the driving is switched off, in agreement with the morphological bistability of static interfacial shapes on posts with large length-to-width ratios. In a narrow frequency band, the channel does not decay into a bulge at any acceleration amplitude, but displays irregular capillary waves and sloshing instead. On short posts, however, a liquid bulge can be dynamically sustained through vertical vibrations but quickly decays into a homogeneous channel after the external driving is stopped. To explain the dynamic bulging of the liquid interface, we propose an effective lifting force pulling on the drop's slowly moving center of mass in the presence of fast oscillation modes
Beschreibung:Date Completed 02.01.2019
Date Revised 02.01.2019
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.8b02370