MSFD : Multi-Scale Segmentation-Based Feature Detection for Wide-Baseline Scene Reconstruction

A common problem in wide-baseline matching is the sparse and non-uniform distribution of correspondences when using conventional detectors, such as SIFT, SURF, FAST, A-KAZE, and MSER. In this paper, we introduce a novel segmentation-based feature detector (SFD) that produces an increased number of a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 3 vom: 28. März, Seite 1118-1132
1. Verfasser: Mustafa, Armin (VerfasserIn)
Weitere Verfasser: Kim, Hansung, Hilton, Adrian
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM289169828
003 DE-627
005 20231225061947.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2872906  |2 doi 
028 5 2 |a pubmed24n0963.xml 
035 |a (DE-627)NLM289169828 
035 |a (NLM)30281455 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Mustafa, Armin  |e verfasserin  |4 aut 
245 1 0 |a MSFD  |b Multi-Scale Segmentation-Based Feature Detection for Wide-Baseline Scene Reconstruction 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.10.2018 
500 |a Date Revised 30.10.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a A common problem in wide-baseline matching is the sparse and non-uniform distribution of correspondences when using conventional detectors, such as SIFT, SURF, FAST, A-KAZE, and MSER. In this paper, we introduce a novel segmentation-based feature detector (SFD) that produces an increased number of accurate features for wide-baseline matching. A multi-scale SFD is proposed using bilateral image decomposition to produce a large number of scale-invariant features for wide-baseline reconstruction. All input images are over-segmented into regions using any existing segmentation technique, such as Watershed, Mean-shift, and simple linear iterative clustering. Feature points are then detected at the intersection of the boundaries of three or more regions. The detected feature points are local maxima of the image function. The key advantage of feature detection based on segmentation is that it does not require global threshold setting and can, therefore, detect features throughout the image. A comprehensive evaluation demonstrates that SFD gives an increased number of features that are accurately localized and matched between wide-baseline camera views; the number of features for a given matching error increases by a factor of 3-5 compared with SIFT; feature detection and matching performance are maintained with increasing baseline between views; multi-scale SFD improves matching performance at varying scales. Application of SFD to sparse multi-view wide-baseline reconstruction demonstrates a factor of 10 increases in the number of reconstructed points with improved scene coverage compared with SIFT/MSER/A-KAZE. Evaluation against ground-truth shows that SFD produces an increased number of wide-baseline matches with a reduced error 
650 4 |a Journal Article 
700 1 |a Kim, Hansung  |e verfasserin  |4 aut 
700 1 |a Hilton, Adrian  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 28(2019), 3 vom: 28. März, Seite 1118-1132  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:28  |g year:2019  |g number:3  |g day:28  |g month:03  |g pages:1118-1132 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2872906  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2019  |e 3  |b 28  |c 03  |h 1118-1132