Learning Effective RGB-D Representations for Scene Recognition

Deep convolutional networks (CNN) can achieve impressive results on RGB scene recognition thanks to large datasets such as Places. In contrast, RGB-D scene recognition is still underdeveloped in comparison, due to two limitations of RGB-D data we address in this paper. The first limitation is the la...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2018) vom: 28. Sept.
1. Verfasser: Song, Xinhang (VerfasserIn)
Weitere Verfasser: Jiang, Shuqiang, Herranz, Luis, Chen, Chengpeng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM289169755
003 DE-627
005 20240229161957.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2872629  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM289169755 
035 |a (NLM)30281448 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Song, Xinhang  |e verfasserin  |4 aut 
245 1 0 |a Learning Effective RGB-D Representations for Scene Recognition 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Deep convolutional networks (CNN) can achieve impressive results on RGB scene recognition thanks to large datasets such as Places. In contrast, RGB-D scene recognition is still underdeveloped in comparison, due to two limitations of RGB-D data we address in this paper. The first limitation is the lack of depth data for training deep learning models. Rather than fine tuning or transferring RGB-specific features, we address this limitation by proposing an architecture and a twostep training approach that directly learns effective depth-specific features using weak supervision via patches. The resulting RGBD model also benefits from more complementary multimodal features. Another limitation is the short range of depth sensors (typically 0.5m to 5.5m), resulting in depth images not capturing distant objects in the scenes that RGB images can. We show that this limitation can be addressed by using RGB-D videos, where more comprehensive depth information is accumulated as the camera travels across the scenes. Focusing on this scenario, we introduce the ISIA RGB-D video dataset to evaluate RGB-D scene recognition with videos. Our video recognition architecture combines convolutional and recurrent neural networks (RNNs) that are trained in three steps with increasingly complex data to learn effective features (i.e. patches, frames and sequences). Our approach obtains state-of-the-art performances on RGB-D image (NYUD2 and SUN RGB-D) and video (ISIA RGB-D) scene recognition 
650 4 |a Journal Article 
700 1 |a Jiang, Shuqiang  |e verfasserin  |4 aut 
700 1 |a Herranz, Luis  |e verfasserin  |4 aut 
700 1 |a Chen, Chengpeng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2018) vom: 28. Sept.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2018  |g day:28  |g month:09 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2872629  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2018  |b 28  |c 09