The Marriage of the FeN4 Moiety and MXene Boosts Oxygen Reduction Catalysis : Fe 3d Electron Delocalization Matters
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 30(2018), 43 vom: 05. Okt., Seite e1803220 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2018
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article MXenes electron delocalization iron-nitrogen-carbon oxygen reduction reaction support effect |
Zusammenfassung: | © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Iron-nitrogen-carbon (Fe-N-C) is hitherto considered as one of the most satisfactory alternatives to platinum for the oxygen reduction reaction (ORR). Major efforts currently are devoted to the identification and maximization of carbon-enclosed FeN4 moieties, which act as catalytically active centers. However, fine-tuning of their intrinsic ORR activity remains a huge challenge. Herein, a twofold activity improvement of pristine Fe-N-C through introducing Ti3 C2 Tx MXene as a support is realized. A series of spectroscopy and magnetic measurements reveal that the marriage of FeN4 moiety and MXene can induce remarkable Fe 3d electron delocalization and spin-state transition of Fe(II) ions. The lower local electron density and higher spin state of the Fe(II) centers greatly favor the Fe d z 2 electron transfer, and lead to an easier oxygen adsorption and reduction on active FeN4 sites, and thus an enhanced ORR activity. The optimized catalyst shows a two- and fivefold higher specific ORR activity than those of pristine catalyst and Pt/C, respectively, even exceeding most Fe-N-C catalysts ever reported. This work opens up a new pathway in the rational design of Fe-N-C catalysts, and reflects the critical influence of Fe 3d electron states in FeN4 moiety supported on MXene in ORR catalysis |
---|---|
Beschreibung: | Date Completed 29.10.2018 Date Revised 01.10.2020 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.201803220 |