Coupled ecohydrology and plant hydraulics modeling predicts ponderosa pine seedling mortality and lower treeline in the US Northern Rocky Mountains

© 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 221(2019), 4 vom: 15. März, Seite 1814-1830
1. Verfasser: Simeone, Caelan (VerfasserIn)
Weitere Verfasser: Maneta, Marco P, Holden, Zachary A, Sapes, Gerard, Sala, Anna, Dobrowski, Solomon Z
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. conifer seedlings ecohydrology hydraulic conductivity hydraulic stress lower treeline mortality ponderosa pine (Pinus ponderosa)
Beschreibung
Zusammenfassung:© 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
We modeled hydraulic stress in ponderosa pine seedlings at multiple scales to examine its influence on mortality and forest extent at the lower treeline in the northern Rockies. We combined a mechanistic ecohydrologic model with a vegetation dynamic stress index incorporating intensity, duration and frequency of hydraulic stress events, to examine mortality from loss of hydraulic conductivity. We calibrated our model using a glasshouse dry-down experiment and tested it using in situ monitoring data on seedling mortality from reforestation efforts. We then simulated hydraulic stress and mortality in seedlings within the Bitterroot River watershed of Montana. We show that cumulative hydraulic stress, its legacy and its consequences for mortality are predictable and can be modeled at local to landscape scales. We demonstrate that topographic controls on the distribution and availability of water and energy drive spatial patterns of hydraulic stress. Low-elevation, south-facing, nonconvergent locations with limited upslope water subsidies experienced the highest rates of modeled mortality. Simulated mortality in seedlings from 2001 to 2015 correlated with the current distribution of forest cover near the lower treeline, suggesting that hydraulic stress limits recruitment and ultimately constrains the low-elevation extent of conifer forests within the region
Beschreibung:Date Completed 09.01.2020
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/nph.15499